DBI::Profile(3pm) - phpMan

Command: man perldoc info search(apropos)  


DBI::Profile(3pm)              User Contributed Perl Documentation              DBI::Profile(3pm)

NAME
       DBI::Profile - Performance profiling and benchmarking for the DBI

SYNOPSIS
       The easiest way to enable DBI profiling is to set the DBI_PROFILE environment variable to
       2 and then run your code as usual:

         DBI_PROFILE=2 prog.pl

       This will profile your program and then output a textual summary grouped by query when the
       program exits.  You can also enable profiling by setting the Profile attribute of any DBI
       handle:

         $dbh->{Profile} = 2;

       Then the summary will be printed when the handle is destroyed.

       Many other values apart from are possible - see "ENABLING A PROFILE" below.

DESCRIPTION
       The DBI::Profile module provides a simple interface to collect and report performance and
       benchmarking data from the DBI.

       For a more elaborate interface, suitable for larger programs, see DBI::ProfileDumper and
       dbiprof.  For Apache/mod_perl applications see DBI::ProfileDumper::Apache.

OVERVIEW
       Performance data collection for the DBI is built around several concepts which are
       important to understand clearly.

       Method Dispatch
           Every method call on a DBI handle passes through a single 'dispatch' function which
           manages all the common aspects of DBI method calls, such as handling the RaiseError
           attribute.

       Data Collection
           If profiling is enabled for a handle then the dispatch code takes a high-resolution
           timestamp soon after it is entered. Then, after calling the appropriate method and
           just before returning, it takes another high-resolution timestamp and calls a function
           to record the information.  That function is passed the two timestamps plus the DBI
           handle and the name of the method that was called.  That data about a single DBI
           method call is called a profile sample.

       Data Filtering
           If the method call was invoked by the DBI or by a driver then the call is ignored for
           profiling because the time spent will be accounted for by the original 'outermost'
           call for your code.

           For example, the calls that the selectrow_arrayref() method makes to prepare() and
           execute() etc. are not counted individually because the time spent in those methods is
           going to be allocated to the selectrow_arrayref() method when it returns. If this was
           not done then it would be very easy to double count time spent inside the DBI.

       Data Storage Tree
           The profile data is accumulated as 'leaves on a tree'. The 'path' through the branches
           of the tree to a particular leaf is determined dynamically for each sample.  This is a
           key feature of DBI profiling.

           For each profiled method call the DBI walks along the Path and uses each value in the
           Path to step into and grow the Data tree.

           For example, if the Path is

             [ 'foo', 'bar', 'baz' ]

           then the new profile sample data will be merged into the tree at

             $h->{Profile}->{Data}->{foo}->{bar}->{baz}

           But it's not very useful to merge all the call data into one leaf node (except to get
           an overall 'time spent inside the DBI' total).  It's more common to want the Path to
           include dynamic values such as the current statement text and/or the name of the
           method called to show what the time spent inside the DBI was for.

           The Path can contain some 'magic cookie' values that are automatically replaced by
           corresponding dynamic values when they're used. These magic cookies always start with
           a punctuation character.

           For example a value of '"!MethodName"' in the Path causes the corresponding entry in
           the Data to be the name of the method that was called.  For example, if the Path was:

             [ 'foo', '!MethodName', 'bar' ]

           and the selectall_arrayref() method was called, then the profile sample data for that
           call will be merged into the tree at:

             $h->{Profile}->{Data}->{foo}->{selectall_arrayref}->{bar}

       Profile Data
           Profile data is stored at the 'leaves' of the tree as references to an array of
           numeric values. For example:

             [
               106,                  # 0: count of samples at this node
               0.0312958955764771,   # 1: total duration
               0.000490069389343262, # 2: first duration
               0.000176072120666504, # 3: shortest duration
               0.00140702724456787,  # 4: longest duration
               1023115819.83019,     # 5: time of first sample
               1023115819.86576,     # 6: time of last sample
             ]

           After the first sample, later samples always update elements 0, 1, and 6, and may
           update 3 or 4 depending on the duration of the sampled call.

ENABLING A PROFILE
       Profiling is enabled for a handle by assigning to the Profile attribute. For example:

         $h->{Profile} = DBI::Profile->new();

       The Profile attribute holds a blessed reference to a hash object that contains the profile
       data and attributes relating to it.

       The class the Profile object is blessed into is expected to provide at least a DESTROY
       method which will dump the profile data to the DBI trace file handle (STDERR by default).

       All these examples have the same effect as each other:

         $h->{Profile} = 0;
         $h->{Profile} = "/DBI::Profile";
         $h->{Profile} = DBI::Profile->new();
         $h->{Profile} = {};
         $h->{Profile} = { Path => [] };

       Similarly, these examples have the same effect as each other:

         $h->{Profile} = 6;
         $h->{Profile} = "6/DBI::Profile";
         $h->{Profile} = "!Statement:!MethodName/DBI::Profile";
         $h->{Profile} = { Path => [ '!Statement', '!MethodName' ] };

       If a non-blessed hash reference is given then the DBI::Profile module is automatically
       "require"'d and the reference is blessed into that class.

       If a string is given then it is processed like this:

           ($path, $module, $args) = split /\//, $string, 3

           @path = split /:/, $path
           @args = split /:/, $args

           eval "require $module" if $module
           $module ||= "DBI::Profile"

           $module->new( Path => \@Path, @args )

       So the first value is used to select the Path to be used (see below).  The second value,
       if present, is used as the name of a module which will be loaded and it's "new" method
       called. If not present it defaults to DBI::Profile. Any other values are passed as
       arguments to the "new" method. For example: ""2/DBIx::OtherProfile/Foo:42"".

       Numbers can be used as a shorthand way to enable common Path values.  The simplest way to
       explain how the values are interpreted is to show the code:

           push @Path, "DBI"           if $path_elem & 0x01;
           push @Path, "!Statement"    if $path_elem & 0x02;
           push @Path, "!MethodName"   if $path_elem & 0x04;
           push @Path, "!MethodClass"  if $path_elem & 0x08;
           push @Path, "!Caller2"      if $path_elem & 0x10;

       So "2" is the same as "!Statement" and "6" (2+4) is the same as "!Statement:!Method".
       Those are the two most commonly used values.  Using a negative number will reverse the
       path. Thus "-6" will group by method name then statement.

       The splitting and parsing of string values assigned to the Profile attribute may seem a
       little odd, but there's a good reason for it.  Remember that attributes can be embedded in
       the Data Source Name string which can be passed in to a script as a parameter. For
       example:

           dbi:DriverName(Profile=>2):dbname
           dbi:DriverName(Profile=>{Username}:!Statement/MyProfiler/Foo:42):dbname

       And also, if the "DBI_PROFILE" environment variable is set then The DBI arranges for every
       driver handle to share the same profile object. When perl exits a single profile summary
       will be generated that reflects (as nearly as practical) the total use of the DBI by the
       application.

THE PROFILE OBJECT
       The DBI core expects the Profile attribute value to be a hash reference and if the
       following values don't exist it will create them as needed:

   Data
       A reference to a hash containing the collected profile data.

   Path
       The Path value is a reference to an array. Each element controls the value to use at the
       corresponding level of the profile Data tree.

       If the value of Path is anything other than an array reference, it is treated as if it
       was:

               [ '!Statement' ]

       The elements of Path array can be one of the following types:

       Special Constant

       !Statement

       Use the current Statement text. Typically that's the value of the Statement attribute for
       the handle the method was called with. Some methods, like commit() and rollback(), are
       unrelated to a particular statement. For those methods !Statement records an empty string.

       For statement handles this is always simply the string that was given to prepare() when
       the handle was created.  For database handles this is the statement that was last prepared
       or executed on that database handle. That can lead to a little 'fuzzyness' because, for
       example, calls to the quote() method to build a new statement will typically be associated
       with the previous statement. In practice this isn't a significant issue and the dynamic
       Path mechanism can be used to setup your own rules.

       !MethodName

       Use the name of the DBI method that the profile sample relates to.

       !MethodClass

       Use the fully qualified name of the DBI method, including the package, that the profile
       sample relates to. This shows you where the method was implemented. For example:

         'DBD::_::db::selectrow_arrayref' =>
             0.022902s
         'DBD::mysql::db::selectrow_arrayref' =>
             2.244521s / 99 = 0.022445s avg (first 0.022813s, min 0.022051s, max 0.028932s)

       The "DBD::_::db::selectrow_arrayref" shows that the driver has inherited the
       selectrow_arrayref method provided by the DBI.

       But you'll note that there is only one call to DBD::_::db::selectrow_arrayref but another
       99 to DBD::mysql::db::selectrow_arrayref. Currently the first call doesn't record the true
       location. That may change.

       !Caller

       Use a string showing the filename and line number of the code calling the method.

       !Caller2

       Use a string showing the filename and line number of the code calling the method, as for
       !Caller, but also include filename and line number of the code that called that. Calls
       from DBI:: and DBD:: packages are skipped.

       !File

       Same as !Caller above except that only the filename is included, not the line number.

       !File2

       Same as !Caller2 above except that only the filenames are included, not the line number.

       !Time

       Use the current value of time(). Rarely used. See the more useful "!Time~N" below.

       !Time~N

       Where "N" is an integer. Use the current value of time() but with reduced precision.  The
       value used is determined in this way:

           int( time() / N ) * N

       This is a useful way to segregate a profile into time slots. For example:

           [ '!Time~60', '!Statement' ]

       Code Reference

       The subroutine is passed the handle it was called on and the DBI method name.  The current
       Statement is in $_. The statement string should not be modified, so most subs start with
       "local $_ = $_;".

       The list of values it returns is used at that point in the Profile Path.  Any undefined
       values are treated as the string ""undef"".

       The sub can 'veto' (reject) a profile sample by including a reference to undef ("\undef")
       in the returned list. That can be useful when you want to only profile statements that
       match a certain pattern, or only profile certain methods.

       Subroutine Specifier

       A Path element that begins with '"&"' is treated as the name of a subroutine in the
       DBI::ProfileSubs namespace and replaced with the corresponding code reference.

       Currently this only works when the Path is specified by the "DBI_PROFILE" environment
       variable.

       Also, currently, the only subroutine in the DBI::ProfileSubs namespace is '&norm_std_n3'.
       That's a very handy subroutine when profiling code that doesn't use placeholders. See
       DBI::ProfileSubs for more information.

       Attribute Specifier

       A string enclosed in braces, such as '"{Username}"', specifies that the current value of
       the corresponding database handle attribute should be used at that point in the Path.

       Reference to a Scalar

       Specifies that the current value of the referenced scalar be used at that point in the
       Path.  This provides an efficient way to get 'contextual' values into your profile.

       Other Values

       Any other values are stringified and used literally.

       (References, and values that begin with punctuation characters are reserved.)

REPORTING
   Report Format
       The current accumulated profile data can be formatted and output using

           print $h->{Profile}->format;

       To discard the profile data and start collecting fresh data you can do:

           $h->{Profile}->{Data} = undef;

       The default results format looks like this:

         DBI::Profile: 0.001015s 42.7% (5 calls) programname @ YYYY-MM-DD HH:MM:SS
         '' =>
             0.000024s / 2 = 0.000012s avg (first 0.000015s, min 0.000009s, max 0.000015s)
         'SELECT mode,size,name FROM table' =>
             0.000991s / 3 = 0.000330s avg (first 0.000678s, min 0.000009s, max 0.000678s)

       Which shows the total time spent inside the DBI, with a count of the total number of
       method calls and the name of the script being run, then a formatted version of the profile
       data tree.

       If the results are being formatted when the perl process is exiting (which is usually the
       case when the DBI_PROFILE environment variable is used) then the percentage of time the
       process spent inside the DBI is also shown. If the process is not exiting then the
       percentage is calculated using the time between the first and last call to the DBI.

       In the example above the paths in the tree are only one level deep and use the Statement
       text as the value (that's the default behaviour).

       The merged profile data at the 'leaves' of the tree are presented as total time spent,
       count, average time spent (which is simply total time divided by the count), then the time
       spent on the first call, the time spent on the fastest call, and finally the time spent on
       the slowest call.

       The 'avg', 'first', 'min' and 'max' times are not particularly useful when the profile
       data path only contains the statement text.  Here's an extract of a more detailed example
       using both statement text and method name in the path:

         'SELECT mode,size,name FROM table' =>
             'FETCH' =>
                 0.000076s
             'fetchrow_hashref' =>
                 0.036203s / 108 = 0.000335s avg (first 0.000490s, min 0.000152s, max 0.002786s)

       Here you can see the 'avg', 'first', 'min' and 'max' for the 108 calls to
       fetchrow_hashref() become rather more interesting.  Also the data for FETCH just shows a
       time value because it was only called once.

       Currently the profile data is output sorted by branch names. That may change in a later
       version so the leaf nodes are sorted by total time per leaf node.

   Report Destination
       The default method of reporting is for the DESTROY method of the Profile object to format
       the results and write them using:

           DBI->trace_msg($results, 0);  # see $ON_DESTROY_DUMP below

       to write them to the DBI trace() filehandle (which defaults to STDERR). To direct the DBI
       trace filehandle to write to a file without enabling tracing the trace() method can be
       called with a trace level of 0. For example:

           DBI->trace(0, $filename);

       The same effect can be achieved without changing the code by setting the "DBI_TRACE"
       environment variable to "0=filename".

       The $DBI::Profile::ON_DESTROY_DUMP variable holds a code ref that's called to perform the
       output of the formatted results.  The default value is:

         $ON_DESTROY_DUMP = sub { DBI->trace_msg($results, 0) };

       Apart from making it easy to send the dump elsewhere, it can also be useful as a simple
       way to disable dumping results.

CHILD HANDLES
       Child handles inherit a reference to the Profile attribute value of their parent.  So if
       profiling is enabled for a database handle then by default the statement handles created
       from it all contribute to the same merged profile data tree.

PROFILE OBJECT METHODS
   format
       See "REPORTING".

   as_node_path_list
         @ary = $dbh->{Profile}->as_node_path_list();
         @ary = $dbh->{Profile}->as_node_path_list($node, $path);

       Returns the collected data ($dbh->{Profile}{Data}) restructured into a list of array refs,
       one for each leaf node in the Data tree. This 'flat' structure is often much simpler for
       applications to work with.

       The first element of each array ref is a reference to the leaf node.  The remaining
       elements are the 'path' through the data tree to that node.

       For example, given a data tree like this:

           {key1a}{key2a}[node1]
           {key1a}{key2b}[node2]
           {key1b}{key2a}{key3a}[node3]

       The as_node_path_list() method  will return this list:

           [ [node1], 'key1a', 'key2a' ]
           [ [node2], 'key1a', 'key2b' ]
           [ [node3], 'key1b', 'key2a', 'key3a' ]

       The nodes are ordered by key, depth-first.

       The $node argument can be used to focus on a sub-tree.  If not specified it defaults to
       $dbh->{Profile}{Data}.

       The $path argument can be used to specify a list of path elements that will be added to
       each element of the returned list. If not specified it defaults to a ref to an empty
       array.

   as_text
         @txt = $dbh->{Profile}->as_text();
         $txt = $dbh->{Profile}->as_text({
             node      => undef,
             path      => [],
             separator => " > ",
             format    => '%1$s: %11$fs / %10$d = %2$fs avg (first %12$fs, min %13$fs, max %14$fs)'."\n";
             sortsub   => sub { ... },
         );

       Returns the collected data ($dbh->{Profile}{Data}) reformatted into a list of formatted
       strings.  In scalar context the list is returned as a single concatenated string.

       A hashref can be used to pass in arguments, the default values are shown in the example
       above.

       The "node" and <path> arguments are passed to as_node_path_list().

       The "separator" argument is used to join the elements of the path for each leaf node.

       The "sortsub" argument is used to pass in a ref to a sub that will order the list.  The
       subroutine will be passed a reference to the array returned by as_node_path_list() and
       should sort the contents of the array in place.  The return value from the sub is ignored.
       For example, to sort the nodes by the second level key you could use:

         sortsub => sub { my $ary=shift; @$ary = sort { $a->[2] cmp $b->[2] } @$ary }

       The "format" argument is a "sprintf" format string that specifies the format to use for
       each leaf node.  It uses the explicit format parameter index mechanism to specify which of
       the arguments should appear where in the string.  The arguments to sprintf are:

            1:  path to node, joined with the separator
            2:  average duration (total duration/count)
                (3 thru 9 are currently unused)
           10:  count
           11:  total duration
           12:  first duration
           13:  smallest duration
           14:  largest duration
           15:  time of first call
           16:  time of first call

CUSTOM DATA MANIPULATION
       Recall that "$h->{Profile}->{Data}" is a reference to the collected data.  Either to a
       'leaf' array (when the Path is empty, i.e., DBI_PROFILE env var is 1), or a reference to
       hash containing values that are either further hash references or leaf array references.

       Sometimes it's useful to be able to summarise some or all of the collected data.  The
       dbi_profile_merge_nodes() function can be used to merge leaf node values.

   dbi_profile_merge_nodes
         use DBI qw(dbi_profile_merge_nodes);

         $time_in_dbi = dbi_profile_merge_nodes(my $totals=[], @$leaves);

       Merges profile data node. Given a reference to a destination array, and zero or more
       references to profile data, merges the profile data into the destination array.  For
       example:

         $time_in_dbi = dbi_profile_merge_nodes(
             my $totals=[],
             [ 10, 0.51, 0.11, 0.01, 0.22, 1023110000, 1023110010 ],
             [ 15, 0.42, 0.12, 0.02, 0.23, 1023110005, 1023110009 ],
         );

       $totals will then contain

         [ 25, 0.93, 0.11, 0.01, 0.23, 1023110000, 1023110010 ]

       and $time_in_dbi will be 0.93;

       The second argument need not be just leaf nodes. If given a reference to a hash then the
       hash is recursively searched for leaf nodes and all those found are merged.

       For example, to get the time spent 'inside' the DBI during an http request, your logging
       code run at the end of the request (i.e. mod_perl LogHandler) could use:

         my $time_in_dbi = 0;
         if (my $Profile = $dbh->{Profile}) { # if DBI profiling is enabled
             $time_in_dbi = dbi_profile_merge_nodes(my $total=[], $Profile->{Data});
             $Profile->{Data} = {}; # reset the profile data
         }

       If profiling has been enabled then $time_in_dbi will hold the time spent inside the DBI
       for that handle (and any other handles that share the same profile data) since the last
       request.

       Prior to DBI 1.56 the dbi_profile_merge_nodes() function was called dbi_profile_merge().
       That name still exists as an alias.

CUSTOM DATA COLLECTION
   Using The Path Attribute
         XXX example to be added later using a selectall_arrayref call
         XXX nested inside a fetch loop where the first column of the
         XXX outer loop is bound to the profile Path using
         XXX bind_column(1, \${ $dbh->{Profile}->{Path}->[0] })
         XXX so you end up with separate profiles for each loop
         XXX (patches welcome to add this to the docs :)

   Adding Your Own Samples
       The dbi_profile() function can be used to add extra sample data into the profile data
       tree. For example:

           use DBI;
           use DBI::Profile (dbi_profile dbi_time);

           my $t1 = dbi_time(); # floating point high-resolution time

           ... execute code you want to profile here ...

           my $t2 = dbi_time();
           dbi_profile($h, $statement, $method, $t1, $t2);

       The $h parameter is the handle the extra profile sample should be associated with. The
       $statement parameter is the string to use where the Path specifies !Statement. If
       $statement is undef then $h->{Statement} will be used. Similarly $method is the string to
       use if the Path specifies !MethodName. There is no default value for $method.

       The $h->{Profile}{Path} attribute is processed by dbi_profile() in the usual way.

       The $h parameter is usually a DBI handle but it can also be a reference to a hash, in
       which case the dbi_profile() acts on each defined value in the hash.  This is an efficient
       way to update multiple profiles with a single sample, and is used by the DashProfiler
       module.

SUBCLASSING
       Alternate profile modules must subclass DBI::Profile to help ensure they work with future
       versions of the DBI.

CAVEATS
       Applications which generate many different statement strings (typically because they don't
       use placeholders) and profile with !Statement in the Path (the default) will consume
       memory in the Profile Data structure for each statement. Use a code ref in the Path to
       return an edited (simplified) form of the statement.

       If a method throws an exception itself (not via RaiseError) then it won't be counted in
       the profile.

       If a HandleError subroutine throws an exception (rather than returning 0 and letting
       RaiseError do it) then the method call won't be counted in the profile.

       Time spent in DESTROY is added to the profile of the parent handle.

       Time spent in DBI->*() methods is not counted. The time spent in the driver connect
       method, $drh->connect(), when it's called by DBI->connect is counted if the DBI_PROFILE
       environment variable is set.

       Time spent fetching tied variables, $DBI::errstr, is counted.

       Time spent in FETCH for $h->{Profile} is not counted, so getting the profile data doesn't
       alter it.

       DBI::PurePerl does not support profiling (though it could in theory).

       For asynchronous queries, time spent while the query is running on the backend is not
       counted.

       A few platforms don't support the gettimeofday() high resolution time function used by the
       DBI (and available via the dbi_time() function).  In which case you'll get integer
       resolution time which is mostly useless.

       On Windows platforms the dbi_time() function is limited to millisecond resolution. Which
       isn't sufficiently fine for our needs, but still much better than integer resolution. This
       limited resolution means that fast method calls will often register as taking 0 time. And
       timings in general will have much more 'jitter' depending on where within the 'current
       millisecond' the start and end timing was taken.

       This documentation could be more clear. Probably needs to be reordered to start with
       several examples and build from there.  Trying to explain the concepts first seems painful
       and to lead to just as many forward references.  (Patches welcome!)

perl v5.34.0                                2022-02-06                          DBI::Profile(3pm)

Generated by $Id: phpMan.php,v 4.55 2007/09/05 04:42:51 chedong Exp $ Author: Che Dong
On Apache
Under GNU General Public License
2025-01-15 05:48 @3.137.159.163 CrawledBy Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)
Valid XHTML 1.0!Valid CSS!