As I’ve wrote few times using multiple key caches is a great way to get CPU scalability if you’re using MyISAM. It is however very annoying - this feature really looks half baked to me.
The problem with multiple key caches and mapping of tables to the different files is - there is no way to see the existing key caches, their mapping and stats. The only thing you can access is key cache parameters - via structured variables
In particular I would like to:
See the list of created caches Right now I can create key caches with random names causing invisible resource consumption. It is possible to make an error in key cache creation but it is not possible to later find out such key cache exists. This in my opinion violates fundamental design principle - if you can create something you should be able to also list what you have created.
See the mappings I can now map tables to be cached in different key caches but there is no way to see the current mappings or to see where each given table is cached.
See other key cache stats To tune the caches I need to see number of accesses, blocks used, number of misses. Such basic feature either does not exist or is not documented.
I’m not sure how relevant is MyISAM with MariaDB on a way but this is surely sad to see the feature of multiple key caches first introduced in MySQL 4.1 was newer quite polished in terms of usability.
Entry posted by peter | No comment
In benchmarks passion (see my two previous posts) I managed to setup all three devices (RAID was on board; Intel X25-E SSD connected to HighPoint controller, FusionIO card) on our working horse Dell PowerEdge R900 (btw, to do that I had to switch from CentOS 5.2 to Ubuntu 8.10, as CentOS was not able to start with attached SSD card to HighPoint controller) and along with other tests I ran tpcc-like IO-bound workload on all devices.
For tests I used MySQL 5.4/InnoDB, and all other parameters are the same from previous posts (100W, buffer_pool 3GB). Filesystem - XFS mounted with nobarrier option.
Graphical results are here
and average results:
RAID10 - 7439.850 TPM
SSD - 10681.050 TPM
FusionIO - 17372.250 TPM
However what should be noted - both SSD and FusionIO are run in “non-durable” mode, that is you may lose some transactions in case of power outage (see my post http://www.mysqlperformanceblog.com/2009/03/02/ssd-xfs-lvm-fsync-write-cache-barrier-and-lost-transactions/).
While results for SSD (note it is single device, in comparison to RAID 10 on 8 disks) and FusionIO are impressive, it is worth to consider price/performance parameter.
Here is my very rough calculation:
For RAID 10 we use 8 73GB SAS 2.5″ 15K RPM disks, with price 190$ per disks it gives us 1520$ for 292GB useful space, or ~ 5.2$ per GB.
For SSD I can get 32GB card for 390$, which is ~12.1$ per GB
For FusionIO I really not sure what is price (it was given as only for tests), but quick googling gave me 30$ per GB, so for 160GB card gives 4800$.
Now simple dividing TPM on price of IO system, we have
RAID 10 - 4.8 TPM / $
SSD - 27 TPM / $
FusionIO - 3.6 TPM / $
Please note that price of transaction is not the main criteria to consider, as total TCO for systems with SSD may be much cheaper (considering you need less servers, less space, less power). Also worth to consider that SSD is only 32GB space and to have the same space as FusionIO we need 4 cards (but it still will be cheaper than FusionIO), but it also may improve performance as such setup will be able to handle IO requests in parallel.
Entry posted by Vadim | 4 comments
As continue to my benchmarks http://www.mysqlperformanceblog.com/2009/04/30/looking-on-54-io-bound-benchmarks/ on 5.4 I tried in-memory load (basically changed buffer pool from 3GB to 15GB, and database size is 10GB). The results are on the same spreadsheet http://spreadsheets.google.com/ccc?key=rYZB2dd2j1pQsvWs2kFvTsg&hl=en#, page CPUBound.
I especially made short warmup (120 sec) and long run (2700sec) to see how different versions go through warmup stage.
The graph is
In default mode I would say XtraDB performs almost the same as 5.4, but dips are a bit worse than in 5.4.
Now about dips - all of them are caused by InnoDB checkpoint activity, InnoDB is doing intensive flushing of buffer_pool pages and that basically causes stall for some period of time in all user processes.
In XtraDB we have special mode adaptive_checkpoint, you see result in this mode. While max performance is worse, there is no dips, and average performance is better.
If Sun Perfomance engineers read this - I call attention to this problem and do not ignore it if Sun started to make changes to InnoDB anyway.
If InnoDB engineers read this and are interested - then, yes, we are ready to provide adaptive_checkpoint patch under BSD license.
Also I was asked what if we set small innodb_max_dirty_pages_pct , will not that help with such dips - you can see results for 5.4 with innodb_max_dirty_pages_pct=15. There really no dips, but average performance is not acceptable. I also tried innodb_max_dirty_pages_pct=30, but results in this case similar to usual 5.4, so I do not show them.
Entry posted by Vadim | 6 comments
三天前,playcafe.com在停止更新3个月后,正式宣布关闭。
网站创始人Mark Goldenson写了一封很长的公开信,总结了自己从失败中得到的10个教训。他这样说:
我下面要写的是一份“验尸报告”,总结了我们做对的和做错的事,以及我们下一次会如何改进。我感到,很多创业者不愿意谈论自己的失败,也不愿意反思。我希望,你能从我的失败中发现一些有用的东西。
在展示这份“验尸报告”之前,我先简单说一下,playcafe.com到底是一个怎样的网站。
实际上,与其说playcafe.com像网站,不如说它更像一档实时的网络电视节目。从2007年4月网站创立,一直到2008年5月,在每天晚上的6点和7点,它准时播放二次游戏节目。访问者通过网络,一边收看直播,一边回答节目中提出的问题,优胜者可以获得奖金。
访问者收看节目的flash界面如下(点击看大图):
尽管playcafe.com的效果不算很差,实际上是相当好:每个访问者的平均停留时间是87分钟,一星期之内,40%的初次访问者会选择再次访问。但是,由于访问者的数量始终不够多,加上金融危机的爆发,最终导致了网站的关门。
=====================
下面就是Mark的10点教训,以及我对每一点的感想。
1. 尽快拿到风险投资
Find quick money first.
Mark说,他们很幸运,认识一些硅谷中实力最雄厚的风险投资家。但是后来发现,这并不有利。因为这样的风险投资家,手里有一大堆项目可供选择,所以他们通常不愿意过早介入,而宁愿等到风险最小化的时候再投钱。但是,对于创业者来说,资金比建议和人脉更有价值。
Mark认为,如果有机会重新开始,他们会将重点放在那些不那么知名的风险投资家身上,争取在项目的最早期阶段就拿到投资。
他说,你要记住一点,如果见面三次以后,还是定不下来,那么不是你的项目不行,就是你找错了人。从另一个角度看,如果你的项目势头良好,你不用去找大牌的风险投资家,他们自己就会找上门。
(【感想】我觉得这一条只适合那些市场前景良好、但是短期内不会盈利的项目。如果你的项目可以产生现金流,那么毫无疑问,你的第一件事绝不是去找风险投资家,而是确保项目能够自给自足,因为风险投资家最后拿走的,总比给你的多得多。)
2. 不要做内容
Content businesses suck.
每天为访问者提供有价值的内容,是一项极其艰巨的任务。
同时做到优秀的内容和优秀的网站性能,看上去似乎可行,但是实际上很难做到。以美国三大电视网为例,它们只负责节目的传播,大部分播放的节目都是外购的。原因就在于“制作内容”和“传播内容”是两件不同的事,而且难度都很大,所以最好还是进行分工。
Mark说,我们知道自己在内容制作上是新手,但是我们觉得,找个漂亮姑娘在摄像机前一站,给观众出出题目就够了。事实证明我们错了,制作高质量的内容,超出了我们的财力可以承受的范围。
请回想一下《美国偶像》这个电视节目,它是美国收视率最高的节目,几乎可以动用无限的资源。但是尽管如此,这个节目在直播中还是会不断地出错。这就足以说明内容制作的难度了。更何况除了内容以外,我们还要为服务器宕机、受攻击、网站升级、客户投诉等等这些事情操心。
我建议任何创业者或投资者,在选择内容制作这个方向之前,都要三思。走内容这条路,比走技术这条路,难度要大一个数量级。Youtube的创始人将网站卖给Google,价格是16.5亿美元,但是Youtube上的内容提供者,想通过节目赚到哪怕这个数字的百分之一,恐怕都是不可能的。而且,数字录像技术DVR和网络分享下载,都会使得你的收入减少,赶跑任何广告客户。
也许,走“生产内容”这条路,最主要的和唯一的原因,就是你真正喜欢做这件事,而不是为了赚钱。
(【感想】我完全同意这一点,所以我不看好任何将网志作为“内容平台”的项目。)
3. 速度 vs. 稳定性
Know when to value speed vs. stability.
要一个性能良好、开发缓慢的网站,还是要一个性能不佳、但是开发快速的网站?
你会怎么选择?
在我们的原始设想中,PlayCafe是一个相当复杂的网站。内容和技术两方面的复杂性,占用了大量的开发时间,最终伤害到了我们。网站的每一个方面,我们都想把它做得又好又稳定。(这并不奇怪,人的天性就是这样。)但是不幸的是,我们的行动步伐因此变得缓慢,而在这个以新颖性和娱乐性为基础的行业中,这是致命的。
有一个隐喻,我很喜欢:如果允许一个新手一次走两步,那么他就可以击败象棋大师。(A chess novice can defeat a master if moving twice each round.)
快速的开发通常会增加软件的错误和不稳定性,如果你是完美主义者,你会感到被冒犯了。但是,我同意Reid Hoffman的说法,那就是当网站的第一个版本发布的时候,如果你看着它不感到难为情,那就说明你用来开发的时间太多了。(If you review your first site version and don’t feel embarrassment, you spent too much time on it.)
有一个例外,如果你的产品是用来完成某项特定任务的,那么上面的说法就不成立了。比如,ebay的购物功能和twitter的发消息功能,必须保持稳定易用。这种功能的开发缓慢,恰恰是因为有大量用户使用它,所以不能急于求成。你必须把这个功能做对。
(【感想】这就是Paul Graham说的,创业者首先要做的,就是尽快拿出产品原型,不管它有多蹩脚,只要能用就行,然后让市场决定未来的开发方向。)
4. 珍惜每一分钟
Set a dollar value on your time.
我有一个坏习惯,那就是喜欢找便宜货,因此经常同别人砍价。为了把无线上网的账单降低100美元,我可以花上3个小时去谈判。我的错误在于忽略了时间的价值。相对于我们获得的投资,这样使用时间简直太不值得了。
时间比钱重要,因为你没法挣来更多的时间。(Time is arguably more valuable than money because you can’t raise more time.)
(【感谢】我太喜欢上面这句话了。很多人的失败,不是因为他没有能力,而是因为他无法有效地管理时间。我自己就是一个例子,一定要时刻鞭策自己提高效率啊。)
5. 营销很重要
Marketing requires constant expertise.
PlayCafe最主要的失败原因,在于销售。其他方面的工作,我们其实做得都不差,就是销售不行,始终无法吸引到足够的访问者。我后来意识到,营销不是一个新手在业余时间,自己就能琢磨出来的,而是需要资深的、有经验的专业人员。
互联网是一个超级饱和的领域,成功的营销能够创造和吸引“差别性的需求”,这对于业余人员,实在是有点太难了。下一次,我们会多募集一些资金,尽早雇佣一个营销专家。
例外的情况是产品本身非常打动人心,用户从内心里认同你、拥护你。这时不用你去做营销,用户就会主动帮你宣传,拉来新的访问者。但是,即使是这样的产品,营销也能加速它的成长。
(【感想】我觉得这一条少了一个前提,Mark没有明确指出,产品是第一位的,营销是第二位的。因为如果你的产品不行,再高明的营销也没用的。)
(未完待续)
Data mining and fast queries are always in that bin of hard to do things where doing something smarter can yield big results. Bloom Filters are one such do it smarter strategy, compressed bitmap indexes are another. In one application "FastBit outruns other search indexes by a factor of 10 to 100 and doesn’t require much more room than the original data size." The data size is an interesting metric. Our old standard b-trees can be two to four times larger than the original data. In a test searching an Enron email database FastBit outran MySQL by 10 to 1,000 times.
FastBit is a software tool for searching large read-only datasets. It organizes user data in a column-oriented structure which is efficient for on-line analytical processing (OLAP), and utilizes compressed bitmap indices to further speed up query processing. Analyses have proven the compressed bitmap index used in FastBit to be theoretically optimal for one-dimensional queries. Compared with other optimal indexing methods, bitmap indices are superior because they can be efficiently combined to answer multi-dimensional queries whereas other optimal methods can not.
It's not all just map-reduce and add more servers until your attic is full.
五月 2009 | ||||||
一 | 二 | 三 | 四 | 五 | 六 | 日 |
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |