TCPDUMP(8) - phpMan

Command: man perldoc info search(apropos)  


TCPDUMP(8)                           System Manager's Manual                           TCPDUMP(8)

NAME
       tcpdump - dump traffic on a network

SYNOPSIS
       tcpdump [ -AbdDefhHIJKlLnNOpqStuUvxX# ] [ -B buffer_size ]
               [ -c count ] [ --count ] [ -C file_size ]
               [ -E spi@ipaddr algo:secret,...  ]
               [ -F file ] [ -G rotate_seconds ] [ -i interface ]
               [ --immediate-mode ] [ -j tstamp_type ] [ -m module ]
               [ -M secret ] [ --number ] [ --print ] [ -Q in|out|inout ]
               [ -r file ] [ -s snaplen ] [ -T type ] [ --version ]
               [ -V file ] [ -w file ] [ -W filecount ] [ -y datalinktype ]
               [ -z postrotate-command ] [ -Z user ]
               [ --time-stamp-precision=tstamp_precision ]
               [ --micro ] [ --nano ]
               [ expression ]

DESCRIPTION
       Tcpdump  prints  out  a description of the contents of packets on a network interface that
       match the Boolean expression; the description is preceded by a time stamp, printed, by de-
       fault,  as hours, minutes, seconds, and fractions of a second since midnight.  It can also
       be run with the -w flag, which causes it to save the packet  data  to  a  file  for  later
       analysis, and/or with the -r flag, which causes it to read from a saved packet file rather
       than to read packets from a network interface.  It can also be run with the -V flag, which
       causes  it to read a list of saved packet files. In all cases, only packets that match ex-
       pression will be processed by tcpdump.

       Tcpdump will, if not run with the -c flag, continue capturing packets until it  is  inter-
       rupted  by  a  SIGINT  signal (generated, for example, by typing your interrupt character,
       typically control-C) or a SIGTERM signal (typically generated with the  kill(1)  command);
       if  run  with  the -c flag, it will capture packets until it is interrupted by a SIGINT or
       SIGTERM signal or the specified number of packets have been processed.

       When tcpdump finishes capturing packets, it will report counts of:

              packets ``captured'' (this is the number of packets that tcpdump has  received  and
              processed);

              packets  ``received  by  filter''  (the  meaning of this depends on the OS on which
              you're running tcpdump, and possibly on the way the OS was configured - if a filter
              was  specified  on  the  command line, on some OSes it counts packets regardless of
              whether they were matched by the filter expression and, even if they  were  matched
              by the filter expression, regardless of whether tcpdump has read and processed them
              yet, on other OSes it counts only packets that were matched by the  filter  expres-
              sion  regardless  of  whether tcpdump has read and processed them yet, and on other
              OSes it counts only packets that were matched by the  filter  expression  and  were
              processed by tcpdump);

              packets ``dropped by kernel'' (this is the number of packets that were dropped, due
              to a lack of buffer space, by the packet capture mechanism in the OS on which  tcp-
              dump  is  running,  if  the OS reports that information to applications; if not, it
              will be reported as 0).

       On platforms that support the SIGINFO signal, such as most BSDs (including macOS) and Dig-
       ital/Tru64 UNIX, it will report those counts when it receives a SIGINFO signal (generated,
       for example, by typing your ``status'' character, typically control-T,  although  on  some
       platforms,  such as macOS, the ``status'' character is not set by default, so you must set
       it with stty(1) in order to use it) and will continue capturing packets. On platforms that
       do not support the SIGINFO signal, the same can be achieved by using the SIGUSR1 signal.

       Using the SIGUSR2 signal along with the -w flag will forcibly flush the packet buffer into
       the output file.

       Reading packets from a network interface may require that you have special privileges; see
       the pcap(3PCAP) man page for details.  Reading a saved packet file doesn't require special
       privileges.

OPTIONS
       -A     Print each packet (minus its link level header) in ASCII.  Handy for capturing  web
              pages.

       -b     Print the AS number in BGP packets in ASDOT notation rather than ASPLAIN notation.

       -B buffer_size
       --buffer-size=buffer_size
              Set  the operating system capture buffer size to buffer_size, in units of KiB (1024
              bytes).

       -c count
              Exit after receiving count packets.

       --count
              Print only on stderr the packet count when reading capture file(s) instead of pars-
              ing/printing  the  packets.  If  a filter is specified on the command line, tcpdump
              counts only packets that were matched by the filter expression.

       -C file_size
              Before writing a raw packet to a savefile, check  whether  the  file  is  currently
              larger  than  file_size  and, if so, close the current savefile and open a new one.
              Savefiles after the first savefile will have the name specified with the  -w  flag,
              with  a  number  after  it,  starting  at  1  and  continuing upward.  The units of
              file_size are millions of bytes (1,000,000 bytes, not 1,048,576 bytes).

              Note that when used with -Z option (enabled by default), privileges are dropped be-
              fore opening first savefile.

       -d     Dump  the compiled packet-matching code in a human readable form to standard output
              and stop.

              Please mind that although code compilation is always DLT-specific, typically it  is
              impossible  (and unnecessary) to specify which DLT to use for the dump because tcp-
              dump uses either the DLT of the input pcap file specified with -r, or  the  default
              DLT  of  the network interface specified with -i, or the particular DLT of the net-
              work interface specified with -y and -i respectively. In these cases the dump shows
              the same exact code that would filter the input file or the network interface with-
              out -d.

              However, when neither -r nor -i is specified, specifying -d prevents  tcpdump  from
              guessing  a  suitable network interface (see -i).  In this case the DLT defaults to
              EN10MB and can be set to another valid value manually with -y.

       -dd    Dump packet-matching code as a C program fragment.

       -ddd   Dump packet-matching code as decimal numbers (preceded with a count).

       -D
       --list-interfaces
              Print the list of the network interfaces available on the system and on which  tcp-
              dump  can  capture  packets.  For each network interface, a number and an interface
              name, possibly followed by a text description of the interface, are  printed.   The
              interface name or the number can be supplied to the -i flag to specify an interface
              on which to capture.

              This can be useful on systems that don't have a command to list them (e.g., Windows
              systems,  or UNIX systems lacking ifconfig -a); the number can be useful on Windows
              2000 and later systems, where the interface name is a somewhat complex string.

              The -D flag will not be supported if tcpdump was built with  an  older  version  of
              libpcap that lacks the pcap_findalldevs(3PCAP) function.

       -e     Print  the  link-level header on each dump line.  This can be used, for example, to
              print MAC layer addresses for protocols such as Ethernet and IEEE 802.11.

       -E     Use spi@ipaddr algo:secret for decrypting IPsec ESP packets that are  addressed  to
              addr  and  contain  Security Parameter Index value spi. This combination may be re-
              peated with comma or newline separation.

              Note that setting the secret for IPv4 ESP packets is supported at this time.

              Algorithms may be des-cbc, 3des-cbc, blowfish-cbc, rc3-cbc, cast128-cbc,  or  none.
              The  default is des-cbc.  The ability to decrypt packets is only present if tcpdump
              was compiled with cryptography enabled.

              secret is the ASCII text for ESP secret key.  If preceded by 0x, then a  hex  value
              will be read.

              The  option assumes RFC2406 ESP, not RFC1827 ESP.  The option is only for debugging
              purposes, and the use of this option with a true `secret' key is  discouraged.   By
              presenting  IPsec  secret  key onto command line you make it visible to others, via
              ps(1) and other occasions.

              In addition to the above syntax, the syntax file name may be used to  have  tcpdump
              read  the provided file in. The file is opened upon receiving the first ESP packet,
              so any special permissions that tcpdump may have been  given  should  already  have
              been given up.

       -f     Print `foreign' IPv4 addresses numerically rather than symbolically (this option is
              intended to get around serious brain damage in Sun's NIS server -- usually it hangs
              forever translating non-local internet numbers).

              The test for `foreign' IPv4 addresses is done using the IPv4 address and netmask of
              the interface on which capture is being done.  If that address or netmask  are  not
              available,  available,  either because the interface on which capture is being done
              has no address or netmask or because the capture is being done on the  Linux  "any"
              interface,  which can capture on more than one interface, this option will not work
              correctly.

       -F file
              Use file as input for the filter expression.  An additional expression given on the
              command line is ignored.

       -G rotate_seconds
              If  specified, rotates the dump file specified with the -w option every rotate_sec-
              onds seconds.  Savefiles will have the name specified by -w which should include  a
              time  format  as  defined by strftime(3).  If no time format is specified, each new
              file will overwrite the previous.  Whenever a generated  filename  is  not  unique,
              tcpdump  will  overwrite the pre-existing data; providing a time specification that
              is coarser than the capture period is therefore not advised.

              If used in conjunction with  the  -C  option,  filenames  will  take  the  form  of
              `file<count>'.

       -h
       --help Print the tcpdump and libpcap version strings, print a usage message, and exit.

       --version
              Print the tcpdump and libpcap version strings and exit.

       -H     Attempt to detect 802.11s draft mesh headers.

       -i interface
       --interface=interface
              Listen,  report  the list of link-layer types, report the list of time stamp types,
              or report the results of compiling a filter expression on interface.   If  unspeci-
              fied  and  if  the -d flag is not given, tcpdump searches the system interface list
              for the lowest numbered, configured up interface (excluding  loopback),  which  may
              turn out to be, for example, ``eth0''.

              On Linux systems with 2.2 or later kernels, an interface argument of ``any'' can be
              used to capture packets from all interfaces.  Note that captures on the ``any'' de-
              vice will not be done in promiscuous mode.

              If  the  -D  flag  is supported, an interface number as printed by that flag can be
              used as the interface argument, if no interface on the system has that number as  a
              name.

       -I
       --monitor-mode
              Put  the  interface  in "monitor mode"; this is supported only on IEEE 802.11 Wi-Fi
              interfaces, and supported only on some operating systems.

              Note that in monitor mode the adapter might  disassociate  from  the  network  with
              which  it's  associated,  so that you will not be able to use any wireless networks
              with that adapter.  This could prevent accessing files on a network server, or  re-
              solving  host  names or network addresses, if you are capturing in monitor mode and
              are not connected to another network with another adapter.

              This flag will affect the output of the -L flag.  If -I isn't specified, only those
              link-layer  types available when not in monitor mode will be shown; if -I is speci-
              fied, only those link-layer types available when in monitor mode will be shown.

       --immediate-mode
              Capture in "immediate mode".  In this mode, packets are  delivered  to  tcpdump  as
              soon  as  they  arrive, rather than being buffered for efficiency.  This is the de-
              fault when printing packets rather than saving packets to  a  ``savefile''  if  the
              packets are being printed to a terminal rather than to a file or pipe.

       -j tstamp_type
       --time-stamp-type=tstamp_type
              Set  the  time stamp type for the capture to tstamp_type.  The names to use for the
              time stamp types are given in pcap-tstamp(7); not all the types listed  there  will
              necessarily be valid for any given interface.

       -J
       --list-time-stamp-types
              List  the supported time stamp types for the interface and exit.  If the time stamp
              type cannot be set for the interface, no time stamp types are listed.

       --time-stamp-precision=tstamp_precision
              When capturing, set the time stamp precision for the capture  to  tstamp_precision.
              Note that availability of high precision time stamps (nanoseconds) and their actual
              accuracy is platform and hardware dependent.  Also note that when writing  captures
              made  with  nanosecond  accuracy  to  a  savefile, the time stamps are written with
              nanosecond resolution, and the file is written with a different  magic  number,  to
              indicate that the time stamps are in seconds and nanoseconds; not all programs that
              read pcap savefiles will be able to read those captures.

              When reading a savefile, convert time stamps to the precision  specified  by  time-
              stamp_precision, and display them with that resolution.  If the precision specified
              is less than the precision of time stamps in the file,  the  conversion  will  lose
              precision.

              The  supported  values for timestamp_precision are micro for microsecond resolution
              and nano for nanosecond resolution.  The default is microsecond resolution.

       --micro
       --nano Shorthands for --time-stamp-precision=micro or --time-stamp-precision=nano, adjust-
              ing  the  time  stamp precision accordingly.  When reading packets from a savefile,
              using --micro truncates time stamps if the savefile  was  created  with  nanosecond
              precision.   In  contrast,  a savefile created with microsecond precision will have
              trailing zeroes added to the time stamp when --nano is used.

       -K
       --dont-verify-checksums
              Don't attempt to verify IP, TCP, or UDP checksums.  This is useful  for  interfaces
              that  perform some or all of those checksum calculation in hardware; otherwise, all
              outgoing TCP checksums will be flagged as bad.

       -l     Make stdout line buffered.  Useful if you want to see the data while capturing  it.
              E.g.,

                     tcpdump -l | tee dat

              or

                     tcpdump -l > dat & tail -f dat

              Note  that  on Windows,``line buffered'' means ``unbuffered'', so that WinDump will
              write each character individually if -l is specified.

              -U is similar to -l in its behavior, but it  will  cause  output  to  be  ``packet-
              buffered'',  so  that  the  output  is  written to stdout at the end of each packet
              rather than at the end of each line; this is buffered on all  platforms,  including
              Windows.

       -L
       --list-data-link-types
              List  the known data link types for the interface, in the specified mode, and exit.
              The list of known data link types may be dependent on the specified mode; for exam-
              ple,  on some platforms, a Wi-Fi interface might support one set of data link types
              when not in monitor mode (for example, it might support only fake Ethernet headers,
              or  might support 802.11 headers but not support 802.11 headers with radio informa-
              tion) and another set of data link types when in  monitor  mode  (for  example,  it
              might  support  802.11  headers,  or 802.11 headers with radio information, only in
              monitor mode).

       -m module
              Load SMI MIB module definitions from file module.  This option can be used  several
              times to load several MIB modules into tcpdump.

       -M secret
              Use secret as a shared secret for validating the digests found in TCP segments with
              the TCP-MD5 option (RFC 2385), if present.

       -n     Don't convert addresses (i.e., host addresses, port numbers, etc.) to names.

       -N     Don't print domain name qualification of host names.  E.g., if you give  this  flag
              then tcpdump will print ``nic'' instead of ``nic.ddn.mil''.

       -#
       --number
              Print an optional packet number at the beginning of the line.

       -O
       --no-optimize
              Do  not run the packet-matching code optimizer.  This is useful only if you suspect
              a bug in the optimizer.

       -p
       --no-promiscuous-mode
              Don't put the interface into promiscuous mode.  Note that the interface might be in
              promiscuous  mode for some other reason; hence, `-p' cannot be used as an abbrevia-
              tion for `ether host {local-hw-addr} or ether broadcast'.

       --print
              Print parsed packet output, even if the raw packets are being saved to a file  with
              the -w flag.

       -Q direction
       --direction=direction
              Choose  send/receive direction direction for which packets should be captured. Pos-
              sible values are `in', `out' and `inout'. Not available on all platforms.

       -q     Quick (quiet?) output.   Print  less  protocol  information  so  output  lines  are
              shorter.

       -r file
              Read packets from file (which was created with the -w option or by other tools that
              write pcap or pcapng files).  Standard input is used if file is ``-''.

       -S
       --absolute-tcp-sequence-numbers
              Print absolute, rather than relative, TCP sequence numbers.

       -s snaplen
       --snapshot-length=snaplen
              Snarf snaplen bytes of data from each packet rather  than  the  default  of  262144
              bytes.  Packets truncated because of a limited snapshot are indicated in the output
              with ``[|proto]'', where proto is the name of the protocol level at which the trun-
              cation has occurred.

              Note  that  taking  larger  snapshots both increases the amount of time it takes to
              process packets and, effectively, decreases the amount of packet  buffering.   This
              may cause packets to be lost.  Note also that taking smaller snapshots will discard
              data from protocols above the transport layer, which loses information that may  be
              important.  NFS and AFS requests and replies, for example, are very large, and much
              of the detail won't be available if a too-short snapshot length is selected.

              If you need to reduce the snapshot size below the default, you should limit snaplen
              to the smallest number that will capture the protocol information you're interested
              in.  Setting snaplen to 0 sets it to the default of 262144, for backwards  compati-
              bility with recent older versions of tcpdump.

       -T type
              Force  packets selected by "expression" to be interpreted the specified type.  Cur-
              rently known types are aodv (Ad-hoc On-demand Distance Vector protocol), carp (Com-
              mon  Address  Redundancy  Protocol),  cnfp (Cisco NetFlow protocol), domain (Domain
              Name System), lmp (Link Management Protocol), pgm  (Pragmatic  General  Multicast),
              pgm_zmtp1  (ZMTP/1.0  inside  PGM/EPGM), ptp (Precision Time Protocol), radius (RA-
              DIUS), resp (REdis Serialization  Protocol),  rpc  (Remote  Procedure  Call),  rtcp
              (Real-Time  Applications  control protocol), rtp (Real-Time Applications protocol),
              snmp (Simple Network Management Protocol), someip  (SOME/IP),  tftp  (Trivial  File
              Transfer  Protocol),  vat (Visual Audio Tool), vxlan (Virtual eXtensible Local Area
              Network), wb (distributed White Board) and zmtp1 (ZeroMQ Message Transport Protocol
              1.0).

              Note that the pgm type above affects UDP interpretation only, the native PGM is al-
              ways recognised as IP protocol 113 regardless. UDP-encapsulated PGM is often called
              "EPGM" or "PGM/UDP".

              Note  that  the  pgm_zmtp1 type above affects interpretation of both native PGM and
              UDP at once. During the native PGM decoding the application data of an  ODATA/RDATA
              packet  would be decoded as a ZeroMQ datagram with ZMTP/1.0 frames.  During the UDP
              decoding in addition to that any UDP packet would be treated as an encapsulated PGM
              packet.

       -t     Don't print a timestamp on each dump line.

       -tt    Print the timestamp, as seconds since January 1, 1970, 00:00:00, UTC, and fractions
              of a second since that time, on each dump line.

       -ttt   Print a delta (microsecond or nanosecond resolution depending on the  --time-stamp-
              precision option) between current and previous line on each dump line.  The default
              is microsecond resolution.

       -tttt  Print a timestamp, as hours, minutes, seconds, and fractions of a second since mid-
              night, preceded by the date, on each dump line.

       -ttttt Print  a delta (microsecond or nanosecond resolution depending on the --time-stamp-
              precision option) between current and first line on each dump line.  The default is
              microsecond resolution.

       -u     Print undecoded NFS handles.

       -U
       --packet-buffered
              If  the  -w  option is not specified, or if it is specified but the --print flag is
              also specified, make the printed packet output ``packet-buffered'';  i.e.,  as  the
              description  of  the  contents of each packet is printed, it will be written to the
              standard output, rather than, when not writing to a terminal,  being  written  only
              when the output buffer fills.

              If  the  -w  option  is  specified,  make  the  saved  raw  packet output ``packet-
              buffered''; i.e., as each packet is saved, it will be written to the  output  file,
              rather than being written only when the output buffer fills.

              The  -U  flag  will  not be supported if tcpdump was built with an older version of
              libpcap that lacks the pcap_dump_flush(3PCAP) function.

       -v     When parsing and printing, produce (slightly more) verbose  output.   For  example,
              the  time  to  live,  identification,  total length and options in an IP packet are
              printed.  Also enables additional packet integrity checks such as verifying the  IP
              and ICMP header checksum.

              When  writing  to a file with the -w option and at the same time not reading from a
              file with the -r option, report to stderr, once per second, the number  of  packets
              captured.  In  Solaris,  FreeBSD and possibly other operating systems this periodic
              update currently can cause loss of captured packets on their way from the kernel to
              tcpdump.

       -vv    Even  more verbose output.  For example, additional fields are printed from NFS re-
              ply packets, and SMB packets are fully decoded.

       -vvv   Even more verbose output.  For example, telnet SB ... SE  options  are  printed  in
              full.  With -X Telnet options are printed in hex as well.

       -V file
              Read a list of filenames from file. Standard input is used if file is ``-''.

       -w file
              Write  the raw packets to file rather than parsing and printing them out.  They can
              later be printed with the -r option.  Standard output is used if file is ``-''.

              This output will be buffered if written to a file or pipe,  so  a  program  reading
              from  the  file  or  pipe may not see packets for an arbitrary amount of time after
              they are received.  Use the -U flag to cause packets to be written as soon as  they
              are received.

              The  MIME  type application/vnd.tcpdump.pcap has been registered with IANA for pcap
              files. The filename extension .pcap appears to be the most commonly used along with
              .cap  and  .dmp.  Tcpdump  itself  doesn't check the extension when reading capture
              files and doesn't add an extension when writing them (it uses magic numbers in  the
              file header instead). However, many operating systems and applications will use the
              extension if it is present and adding one (e.g. .pcap) is recommended.

              See pcap-savefile(5) for a description of the file format.

       -W filecount
              Used in conjunction with the -C option, this will limit the number of files created
              to  the specified number, and begin overwriting files from the beginning, thus cre-
              ating a 'rotating' buffer.  In addition, it will name the files with enough leading
              0s to support the maximum number of files, allowing them to sort correctly.

              Used  in conjunction with the -G option, this will limit the number of rotated dump
              files that get created, exiting with status 0 when reaching the limit.

              If used in conjunction with both -C and -G, the -W option  will  currently  be  ig-
              nored, and will only affect the file name.

       -x     When  parsing  and  printing,  in  addition to printing the headers of each packet,
              print the data of each packet (minus its link level header) in hex.  The smaller of
              the  entire  packet or snaplen bytes will be printed.  Note that this is the entire
              link-layer packet, so for link layers that pad (e.g. Ethernet), the  padding  bytes
              will also be printed when the higher layer packet is shorter than the required pad-
              ding.  In the current implementation this flag may have the same effect as  -xx  if
              the packet is truncated.

       -xx    When  parsing  and  printing,  in  addition to printing the headers of each packet,
              print the data of each packet, including its link level header, in hex.

       -X     When parsing and printing, in addition to printing  the  headers  of  each  packet,
              print the data of each packet (minus its link level header) in hex and ASCII.  This
              is very handy for analysing new protocols.  In the current implementation this flag
              may have the same effect as -XX if the packet is truncated.

       -XX    When  parsing  and  printing,  in  addition to printing the headers of each packet,
              print the data of each packet, including its link level header, in hex and ASCII.

       -y datalinktype
       --linktype=datalinktype
              Set the data link type to use while capturing packets (see -L)  or  just  compiling
              and dumping packet-matching code (see -d) to datalinktype.

       -z postrotate-command
              Used in conjunction with the -C or -G options, this will make tcpdump run " postro-
              tate-command file " where file is the savefile being closed  after  each  rotation.
              For  example, specifying -z gzip or -z bzip2 will compress each savefile using gzip
              or bzip2.

              Note that tcpdump will run the command in parallel to the capture, using the lowest
              priority so that this doesn't disturb the capture process.

              And  in  case  you would like to use a command that itself takes flags or different
              arguments, you can always write a shell script that will take the savefile name  as
              the  only argument, make the flags & arguments arrangements and execute the command
              that you want.

       -Z user
       --relinquish-privileges=user
              If tcpdump is running as root, after opening the capture device or input  savefile,
              change the user ID to user and the group ID to the primary group of user.

              This behavior is enabled by default (-Z tcpdump), and can be disabled by -Z root.

        expression
              selects  which  packets  will be dumped.  If no expression is given, all packets on
              the net will be dumped.  Otherwise, only packets for  which  expression  is  `true'
              will be dumped.

              For the expression syntax, see pcap-filter(7).

              The expression argument can be passed to tcpdump as either a single Shell argument,
              or as multiple Shell arguments, whichever is more convenient.   Generally,  if  the
              expression contains Shell metacharacters, such as backslashes used to escape proto-
              col names, it is easier to pass it as a single, quoted argument rather than to  es-
              cape the Shell metacharacters.  Multiple arguments are concatenated with spaces be-
              fore being parsed.

EXAMPLES
       To print all packets arriving at or departing from sundown:
              tcpdump host sundown

       To print traffic between helios and either hot or ace:
              tcpdump host helios and \( hot or ace \)

       To print all IP packets between ace and any host except helios:
              tcpdump ip host ace and not helios

       To print all traffic between local hosts and hosts at Berkeley:
              tcpdump net ucb-ether

       To print all ftp traffic through internet gateway  snup:  (note  that  the  expression  is
       quoted to prevent the shell from (mis-)interpreting the parentheses):
              tcpdump 'gateway snup and (port ftp or ftp-data)'

       To  print traffic neither sourced from nor destined for local hosts (if you gateway to one
       other net, this stuff should never make it onto your local net).
              tcpdump ip and not net localnet

       To print the start and end packets (the SYN and FIN packets) of each TCP conversation that
       involves a non-local host.
              tcpdump 'tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net localnet'

       To  print  the TCP packets with flags RST and ACK both set.  (i.e. select only the RST and
       ACK flags in the flags field, and if the result is "RST and ACK both set", match)
              tcpdump 'tcp[tcpflags] & (tcp-rst|tcp-ack) == (tcp-rst|tcp-ack)'

       To print all IPv4 HTTP packets to and from port 80, i.e. print only packets  that  contain
       data, not, for example, SYN and FIN packets and ACK-only packets.  (IPv6 is left as an ex-
       ercise for the reader.)
              tcpdump 'tcp port 80 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)'

       To print IP packets longer than 576 bytes sent through gateway snup:
              tcpdump 'gateway snup and ip[2:2] > 576'

       To print IP broadcast or multicast packets that were not sent via  Ethernet  broadcast  or
       multicast:
              tcpdump 'ether[0] & 1 = 0 and ip[16] >= 224'

       To print all ICMP packets that are not echo requests/replies (i.e., not ping packets):
              tcpdump 'icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply'

OUTPUT FORMAT
       The  output of tcpdump is protocol dependent.  The following gives a brief description and
       examples of most of the formats.

       Timestamps

       By default, all output lines are preceded by a timestamp.  The timestamp  is  the  current
       clock time in the form
              hh:mm:ss.frac
       and  is as accurate as the kernel's clock.  The timestamp reflects the time the kernel ap-
       plied a time stamp to the packet.  No attempt is made to account for the time lag  between
       when  the  network  interface  finished receiving the packet from the network and when the
       kernel applied a time stamp to the packet; that time lag could include a delay between the
       time  when the network interface finished receiving a packet from the network and the time
       when an interrupt was delivered to the kernel to get it to read the packet and a delay be-
       tween  the  time  when the kernel serviced the `new packet' interrupt and the time when it
       applied a time stamp to the packet.

       Link Level Headers

       If the '-e' option is given, the link level header is  printed  out.   On  Ethernets,  the
       source and destination addresses, protocol, and packet length are printed.

       On FDDI networks, the  '-e' option causes tcpdump to print the `frame control' field,  the
       source and destination addresses, and the packet length.  (The `frame control' field  gov-
       erns the interpretation of the rest of the packet.  Normal packets (such as those contain-
       ing IP datagrams) are `async' packets, with a priority value between 0 and 7; for example,
       `async4'.  Such packets are assumed to contain an 802.2 Logical Link Control (LLC) packet;
       the LLC header is printed if it is not an ISO datagram or a so-called SNAP packet.

       On Token Ring networks, the '-e' option causes tcpdump to print the `access  control'  and
       `frame  control'  fields, the source and destination addresses, and the packet length.  As
       on FDDI networks, packets are assumed to contain an LLC packet.  Regardless of whether the
       '-e'  option  is  specified  or not, the source routing information is printed for source-
       routed packets.

       On 802.11 networks, the '-e' option causes tcpdump to print the  `frame  control'  fields,
       all  of  the  addresses in the 802.11 header, and the packet length.  As on FDDI networks,
       packets are assumed to contain an LLC packet.

       (N.B.: The following description assumes familiarity with the SLIP  compression  algorithm
       described in RFC-1144.)

       On SLIP links, a direction indicator (``I'' for inbound, ``O'' for outbound), packet type,
       and compression information are printed out.  The packet type is printed first.  The three
       types are ip, utcp, and ctcp.  No further link information is printed for ip packets.  For
       TCP packets, the connection identifier is printed following the type.  If  the  packet  is
       compressed,  its encoded header is printed out.  The special cases are printed out as *S+n
       and *SA+n, where n is the amount by which the sequence number (or sequence number and ack)
       has  changed.  If it is not a special case, zero or more changes are printed.  A change is
       indicated by U (urgent pointer), W (window), A (ack), S (sequence number), and  I  (packet
       ID),  followed by a delta (+n or -n), or a new value (=n).  Finally, the amount of data in
       the packet and compressed header length are printed.

       For example, the following line shows an outbound compressed TCP packet, with an  implicit
       connection identifier; the ack has changed by 6, the sequence number by 49, and the packet
       ID by 6; there are 3 bytes of data and 6 bytes of compressed header:
              O ctcp * A+6 S+49 I+6 3 (6)

       ARP/RARP Packets

       ARP/RARP output shows the type of request and its arguments.  The format is intended to be
       self  explanatory.   Here  is a short sample taken from the start of an `rlogin' from host
       rtsg to host csam:
              arp who-has csam tell rtsg
              arp reply csam is-at CSAM
       The first line says that rtsg sent an ARP packet asking for the Ethernet address of inter-
       net  host  csam.   Csam  replies  with its Ethernet address (in this example, Ethernet ad-
       dresses are in caps and internet addresses in lower case).

       This would look less redundant if we had done tcpdump -n:
              arp who-has 128.3.254.6 tell 128.3.254.68
              arp reply 128.3.254.6 is-at 02:07:01:00:01:c4

       If we had done tcpdump -e, the fact that the first packet is broadcast and the  second  is
       point-to-point would be visible:
              RTSG Broadcast 0806  64: arp who-has csam tell rtsg
              CSAM RTSG 0806  64: arp reply csam is-at CSAM
       For the first packet this says the Ethernet source address is RTSG, the destination is the
       Ethernet broadcast address, the type field contained hex 0806 (type ETHER_ARP) and the to-
       tal length was 64 bytes.

       IPv4 Packets

       If  the  link-layer header is not being printed, for IPv4 packets, IP is printed after the
       time stamp.

       If the -v flag is specified, information from the IPv4 header is shown in parentheses  af-
       ter the IP or the link-layer header.  The general format of this information is:
              tos tos, ttl ttl, id id, offset offset, flags [flags], proto proto, length length, options (options)
       tos  is  the  type  of  service field; if the ECN bits are non-zero, those are reported as
       ECT(1), ECT(0), or CE.  ttl is the time-to-live; it is not reported if it is zero.  id  is
       the  IP  identification field.  offset is the fragment offset field; it is printed whether
       this is part of a fragmented datagram or not.  flags are the MF and DF  flags;  +  is  re-
       ported  if  MF is set, and DF is reported if F is set.  If neither are set, . is reported.
       proto is the protocol ID field.  length is the total length field.  options are the IP op-
       tions, if any.

       Next,  for  TCP  and  UDP  packets, the source and destination IP addresses and TCP or UDP
       ports, with a dot between each IP address and its corresponding  port,  will  be  printed,
       with  a  > separating the source and destination.  For other protocols, the addresses will
       be printed, with a > separating the source and destination.  Higher level protocol  infor-
       mation, if any, will be printed after that.

       For fragmented IP datagrams, the first fragment contains the higher level protocol header;
       fragments after the first contain no higher level protocol header.  Fragmentation informa-
       tion  will  be  printed  only with the -v flag, in the IP header information, as described
       above.

       TCP Packets

       (N.B.:The following description assumes familiarity with the  TCP  protocol  described  in
       RFC-793.   If you are not familiar with the protocol, this description will not be of much
       use to you.)

       The general format of a TCP protocol line is:
              src > dst: Flags [tcpflags], seq data-seqno, ack ackno, win window, urg urgent, options [opts], length len
       Src and dst are the source and destination IP addresses and ports.  Tcpflags are some com-
       bination of S (SYN), F (FIN), P (PUSH), R (RST), U (URG), W (ECN CWR), E (ECN-Echo) or `.'
       (ACK), or `none' if no flags are set.  Data-seqno describes the portion of sequence  space
       covered  by  the data in this packet (see example below).  Ackno is sequence number of the
       next data expected the other direction on this connection.  Window is the number of  bytes
       of  receive  buffer space available the other direction on this connection.  Urg indicates
       there is `urgent' data in the packet.  Opts are TCP options (e.g., mss 1024).  Len is  the
       length of payload data.

       Iptype,  Src,  dst, and flags are always present.  The other fields depend on the contents
       of the packet's TCP protocol header and are output only if appropriate.

       Here is the opening portion of an rlogin from host rtsg to host csam.
              IP rtsg.1023 > csam.login: Flags [S], seq 768512:768512, win 4096, opts [mss 1024]
              IP csam.login > rtsg.1023: Flags [S.], seq, 947648:947648, ack 768513, win 4096, opts [mss 1024]
              IP rtsg.1023 > csam.login: Flags [.], ack 1, win 4096
              IP rtsg.1023 > csam.login: Flags [P.], seq 1:2, ack 1, win 4096, length 1
              IP csam.login > rtsg.1023: Flags [.], ack 2, win 4096
              IP rtsg.1023 > csam.login: Flags [P.], seq 2:21, ack 1, win 4096, length 19
              IP csam.login > rtsg.1023: Flags [P.], seq 1:2, ack 21, win 4077, length 1
              IP csam.login > rtsg.1023: Flags [P.], seq 2:3, ack 21, win 4077, urg 1, length 1
              IP csam.login > rtsg.1023: Flags [P.], seq 3:4, ack 21, win 4077, urg 1, length 1
       The first line says that TCP port 1023 on rtsg sent a packet to port login on csam.  The S
       indicates  that  the  SYN flag was set.  The packet sequence number was 768512 and it con-
       tained no data.  (The notation is `first:last' which means `sequence numbers first  up  to
       but not including last'.)  There was no piggy-backed ACK, the available receive window was
       4096 bytes and there was a max-segment-size option requesting an MSS of 1024 bytes.

       Csam replies with a similar packet except it includes a piggy-backed ACK for  rtsg's  SYN.
       Rtsg  then  ACKs csam's SYN.  The `.' means the ACK flag was set.  The packet contained no
       data so there is no data sequence number or length.  Note that the ACK sequence number  is
       a  small integer (1).  The first time tcpdump sees a TCP `conversation', it prints the se-
       quence number from the packet.  On subsequent packets of the conversation, the  difference
       between  the current packet's sequence number and this initial sequence number is printed.
       This means that sequence numbers after the first can be interpreted as relative byte posi-
       tions  in  the  conversation's  data stream (with the first data byte each direction being
       `1').  `-S' will override this feature, causing the original sequence numbers to  be  out-
       put.

       On  the 6th line, rtsg sends csam 19 bytes of data (bytes 2 through 20 in the rtsg -> csam
       side of the conversation).  The PUSH flag is set in the packet.  On  the  7th  line,  csam
       says  it's  received data sent by rtsg up to but not including byte 21.  Most of this data
       is apparently sitting in the socket buffer since csam's receive window has gotten 19 bytes
       smaller.   Csam  also  sends  one byte of data to rtsg in this packet.  On the 8th and 9th
       lines, csam sends two bytes of urgent, pushed data to rtsg.

       If the snapshot was small enough that tcpdump didn't capture the full TCP header,  it  in-
       terprets  as  much of the header as it can and then reports ``[|tcp]'' to indicate the re-
       mainder could not be interpreted.  If the header contains  a  bogus  option  (one  with  a
       length  that's  either  too  small or beyond the end of the header), tcpdump reports it as
       ``[bad opt]'' and does not interpret any further options (since it's  impossible  to  tell
       where they start).  If the header length indicates options are present but the IP datagram
       length is not long enough for the options to actually be  there,  tcpdump  reports  it  as
       ``[bad hdr length]''.

       Capturing TCP packets with particular flag combinations (SYN-ACK, URG-ACK, etc.)

       There are 8 bits in the control bits section of the TCP header:

              CWR | ECE | URG | ACK | PSH | RST | SYN | FIN

       Let's  assume that we want to watch packets used in establishing a TCP connection.  Recall
       that TCP uses a 3-way handshake protocol when it initializes a new connection; the connec-
       tion sequence with regard to the TCP control bits is

              1) Caller sends SYN
              2) Recipient responds with SYN, ACK
              3) Caller sends ACK

       Now  we're  interested in capturing packets that have only the SYN bit set (Step 1).  Note
       that we don't want packets from step 2 (SYN-ACK), just a plain initial SYN.  What we  need
       is a correct filter expression for tcpdump.

       Recall the structure of a TCP header without options:

        0                            15                              31
       -----------------------------------------------------------------
       |          source port          |       destination port        |
       -----------------------------------------------------------------
       |                        sequence number                        |
       -----------------------------------------------------------------
       |                     acknowledgment number                     |
       -----------------------------------------------------------------
       |  HL   | rsvd  |C|E|U|A|P|R|S|F|        window size            |
       -----------------------------------------------------------------
       |         TCP checksum          |       urgent pointer          |
       -----------------------------------------------------------------

       A  TCP header usually holds 20 octets of data, unless options are present.  The first line
       of the graph contains octets 0 - 3, the second line shows octets 4 - 7 etc.

       Starting to count with 0, the relevant TCP control bits are contained in octet 13:

        0             7|             15|             23|             31
       ----------------|---------------|---------------|----------------
       |  HL   | rsvd  |C|E|U|A|P|R|S|F|        window size            |
       ----------------|---------------|---------------|----------------
       |               |  13th octet   |               |               |

       Let's have a closer look at octet no. 13:

                       |               |
                       |---------------|
                       |C|E|U|A|P|R|S|F|
                       |---------------|
                       |7   5   3     0|

       These are the TCP control bits we are interested in.  We have numbered the  bits  in  this
       octet  from  0  to  7, right to left, so the PSH bit is bit number 3, while the URG bit is
       number 5.

       Recall that we want to capture packets with only SYN set.  Let's see what happens to octet
       13 if a TCP datagram arrives with the SYN bit set in its header:

                       |C|E|U|A|P|R|S|F|
                       |---------------|
                       |0 0 0 0 0 0 1 0|
                       |---------------|
                       |7 6 5 4 3 2 1 0|

       Looking at the control bits section we see that only bit number 1 (SYN) is set.

       Assuming  that octet number 13 is an 8-bit unsigned integer in network byte order, the bi-
       nary value of this octet is

              00000010

       and its decimal representation is

          7     6     5     4     3     2     1     0
       0*2 + 0*2 + 0*2 + 0*2 + 0*2 + 0*2 + 1*2 + 0*2  =  2

       We're almost done, because now we know that if only SYN is set,  the  value  of  the  13th
       octet  in the TCP header, when interpreted as a 8-bit unsigned integer in network byte or-
       der, must be exactly 2.

       This relationship can be expressed as
              tcp[13] == 2

       We can use this expression as the filter for tcpdump in order to watch packets which  have
       only SYN set:
              tcpdump -i xl0 tcp[13] == 2

       The expression says "let the 13th octet of a TCP datagram have the decimal value 2", which
       is exactly what we want.

       Now, let's assume that we need to capture SYN packets, but we don't care  if  ACK  or  any
       other  TCP control bit is set at the same time.  Let's see what happens to octet 13 when a
       TCP datagram with SYN-ACK set arrives:

            |C|E|U|A|P|R|S|F|
            |---------------|
            |0 0 0 1 0 0 1 0|
            |---------------|
            |7 6 5 4 3 2 1 0|

       Now bits 1 and 4 are set in the 13th octet.  The binary value of octet 13 is

                   00010010

       which translates to decimal

          7     6     5     4     3     2     1     0
       0*2 + 0*2 + 0*2 + 1*2 + 0*2 + 0*2 + 1*2 + 0*2   = 18

       Now we can't just use 'tcp[13] == 18' in the tcpdump filter expression, because that would
       select  only those packets that have SYN-ACK set, but not those with only SYN set.  Remem-
       ber that we don't care if ACK or any other control bit is set as long as SYN is set.

       In order to achieve our goal, we need to logically AND the binary value of octet  13  with
       some other value to preserve the SYN bit.  We know that we want SYN to be set in any case,
       so we'll logically AND the value in the 13th octet with the binary value of a SYN:

                 00010010 SYN-ACK              00000010 SYN
            AND  00000010 (we want SYN)   AND  00000010 (we want SYN)
                 --------                      --------
            =    00000010                 =    00000010

       We see that this AND operation delivers the same result regardless whether ACK or  another
       TCP control bit is set.  The decimal representation of the AND value as well as the result
       of this operation is 2 (binary 00000010), so we know that for packets  with  SYN  set  the
       following relation must hold true:

              ( ( value of octet 13 ) AND ( 2 ) ) == ( 2 )

       This points us to the tcpdump filter expression
                   tcpdump -i xl0 'tcp[13] & 2 == 2'

       Some offsets and field values may be expressed as names rather than as numeric values. For
       example tcp[13] may be replaced with tcp[tcpflags]. The following TCP  flag  field  values
       are also available: tcp-fin, tcp-syn, tcp-rst, tcp-push, tcp-ack, tcp-urg.

       This can be demonstrated as:
                   tcpdump -i xl0 'tcp[tcpflags] & tcp-push != 0'

       Note  that  you  should use single quotes or a backslash in the expression to hide the AND
       ('&') special character from the shell.

       UDP Packets

       UDP format is illustrated by this rwho packet:
              actinide.who > broadcast.who: udp 84
       This says that port who on host actinide sent a UDP datagram to port who  on  host  broad-
       cast, the Internet broadcast address.  The packet contained 84 bytes of user data.

       Some  UDP  services  are  recognized  (from the source or destination port number) and the
       higher level protocol information printed.  In particular, Domain  Name  service  requests
       (RFC-1034/1035) and Sun RPC calls (RFC-1050) to NFS.

       TCP or UDP Name Server Requests

       (N.B.:The  following  description assumes familiarity with the Domain Service protocol de-
       scribed in RFC-1035.  If you are not familiar with the protocol, the following description
       will appear to be written in Greek.)

       Name server requests are formatted as
              src > dst: id op? flags qtype qclass name (len)
              h2opolo.1538 > helios.domain: 3+ A? ucbvax.berkeley.edu. (37)
       Host  h2opolo asked the domain server on helios for an address record (qtype=A) associated
       with the name ucbvax.berkeley.edu.  The query id was `3'.  The `+' indicates the recursion
       desired flag was set.  The query length was 37 bytes, excluding the TCP or UDP and IP pro-
       tocol headers.  The query operation was the normal one, Query, so the op field  was  omit-
       ted.  If the op had been anything else, it would have been printed between the `3' and the
       `+'.  Similarly, the qclass was the normal one, C_IN, and omitted.  Any other qclass would
       have been printed immediately after the `A'.

       A  few  anomalies  are checked and may result in extra fields enclosed in square brackets:
       If a query contains an answer, authority records or additional records  section,  ancount,
       nscount,  or  arcount are printed as `[na]', `[nn]' or  `[nau]' where n is the appropriate
       count.  If any of the response bits are set (AA, RA or rcode) or any of the `must be zero'
       bits  are  set  in bytes two and three, `[b2&3=x]' is printed, where x is the hex value of
       header bytes two and three.

       TCP or UDP Name Server Responses

       Name server responses are formatted as
              src > dst:  id op rcode flags a/n/au type class data (len)
              helios.domain > h2opolo.1538: 3 3/3/7 A 128.32.137.3 (273)
              helios.domain > h2opolo.1537: 2 NXDomain* 0/1/0 (97)
       In the first example, helios responds to query id 3 from h2opolo with 3 answer records,  3
       name server records and 7 additional records.  The first answer record is type A (address)
       and its data is internet address 128.32.137.3.  The total size of  the  response  was  273
       bytes,  excluding  TCP  or UDP and IP headers.  The op (Query) and response code (NoError)
       were omitted, as was the class (C_IN) of the A record.

       In the second example, helios responds to query 2 with a response code of non-existent do-
       main  (NXDomain) with no answers, one name server and no authority records.  The `*' indi-
       cates that the authoritative answer bit was set.  Since there were no  answers,  no  type,
       class or data were printed.

       Other flag characters that might appear are `-' (recursion available, RA, not set) and `|'
       (truncated message, TC, set).  If the `question' section doesn't contain exactly  one  en-
       try, `[nq]' is printed.

       SMB/CIFS decoding

       tcpdump  now  includes fairly extensive SMB/CIFS/NBT decoding for data on UDP/137, UDP/138
       and TCP/139.  Some primitive decoding of IPX and NetBEUI SMB data is also done.

       By default a fairly minimal decode is done, with a much more detailed decode done if -v is
       used.   Be warned that with -v a single SMB packet may take up a page or more, so only use
       -v if you really want all the gory details.

       For  information  on  SMB  packet   formats   and   what   all   the   fields   mean   see
       https://download.samba.org/pub/samba/specs/  and  other online resources.  The SMB patches
       were written by Andrew Tridgell (tridge AT samba.org).

       NFS Requests and Replies

       Sun NFS (Network File System) requests and replies are printed as:
              src.sport > dst.nfs: NFS request xid xid len op args
              src.nfs > dst.dport: NFS reply xid xid reply stat len op results
              sushi.1023 > wrl.nfs: NFS request xid 26377
                   112 readlink fh 21,24/10.73165
              wrl.nfs > sushi.1023: NFS reply xid 26377
                   reply ok 40 readlink "../var"
              sushi.1022 > wrl.nfs: NFS request xid 8219
                   144 lookup fh 9,74/4096.6878 "xcolors"
              wrl.nfs > sushi.1022: NFS reply xid 8219
                   reply ok 128 lookup fh 9,74/4134.3150
       In the first line, host sushi sends a transaction with id 26377 to wrl.  The  request  was
       112  bytes, excluding the UDP and IP headers.  The operation was a readlink (read symbolic
       link) on file handle (fh) 21,24/10.731657119.  (If one is lucky, as in this case, the file
       handle  can be interpreted as a major,minor device number pair, followed by the inode num-
       ber and generation number.) In the second line, wrl replies `ok' with the same transaction
       id and the contents of the link.

       In  the  third line, sushi asks (using a new transaction id) wrl to lookup the name `xcol-
       ors' in directory file 9,74/4096.6878. In the fourth line, wrl sends a reply with the  re-
       spective transaction id.

       Note  that  the  data printed depends on the operation type.  The format is intended to be
       self explanatory if read in conjunction with an NFS protocol spec.  Also note  that  older
       versions of tcpdump printed NFS packets in a slightly different format: the transaction id
       (xid) would be printed instead of the non-NFS port number of the packet.

       If the -v (verbose) flag is given, additional information is printed.  For example:
              sushi.1023 > wrl.nfs: NFS request xid 79658
                   148 read fh 21,11/12.195 8192 bytes @ 24576
              wrl.nfs > sushi.1023: NFS reply xid 79658
                   reply ok 1472 read REG 100664 ids 417/0 sz 29388
       (-v also prints the IP header TTL, ID, length, and fragmentation fields, which  have  been
       omitted  from  this  example.)   In the first line, sushi asks wrl to read 8192 bytes from
       file 21,11/12.195, at byte offset 24576.  Wrl replies `ok'; the packet shown on the second
       line  is  the  first  fragment  of the reply, and hence is only 1472 bytes long (the other
       bytes will follow in subsequent fragments, but these fragments do not have NFS or even UDP
       headers  and  so  might not be printed, depending on the filter expression used).  Because
       the -v flag is given, some of the file attributes (which are returned in addition  to  the
       file  data)  are printed: the file type (``REG'', for regular file), the file mode (in oc-
       tal), the UID and GID, and the file size.

       If the -v flag is given more than once, even more details are printed.

       NFS reply packets do not explicitly identify the RPC operation.   Instead,  tcpdump  keeps
       track  of  ``recent''  requests, and matches them to the replies using the transaction ID.
       If a reply does not closely follow the corresponding request, it might not be parsable.

       AFS Requests and Replies

       Transarc AFS (Andrew File System) requests and replies are printed as:

              src.sport > dst.dport: rx packet-type
              src.sport > dst.dport: rx packet-type service call call-name args
              src.sport > dst.dport: rx packet-type service reply call-name args
              elvis.7001 > pike.afsfs:
                   rx data fs call rename old fid 536876964/1/1 ".newsrc.new"
                   new fid 536876964/1/1 ".newsrc"
              pike.afsfs > elvis.7001: rx data fs reply rename
       In the first line, host elvis sends a RX packet to pike.  This was a RX data packet to the
       fs (fileserver) service, and is the start of an RPC call.  The RPC call was a rename, with
       the old directory file id of 536876964/1/1 and an old filename of `.newsrc.new', and a new
       directory  file  id  of  536876964/1/1 and a new filename of `.newsrc'.  The host pike re-
       sponds with a RPC reply to the rename call (which was successful, because it  was  a  data
       packet and not an abort packet).

       In  general,  all  AFS  RPCs are decoded at least by RPC call name.  Most AFS RPCs have at
       least some of the arguments decoded (generally only the `interesting' arguments, for  some
       definition of interesting).

       The format is intended to be self-describing, but it will probably not be useful to people
       who are not familiar with the workings of AFS and RX.

       If the -v (verbose) flag is given twice, acknowledgement packets and additional header in-
       formation is printed, such as the RX call ID, call number, sequence number, serial number,
       and the RX packet flags.

       If the -v flag is given twice, additional information is printed, such as the RX call  ID,
       serial  number,  and the RX packet flags.  The MTU negotiation information is also printed
       from RX ack packets.

       If the -v flag is given three times, the security index and service id are printed.

       Error codes are printed for abort packets, with the exception of Ubik beacon packets  (be-
       cause abort packets are used to signify a yes vote for the Ubik protocol).

       AFS  reply  packets  do not explicitly identify the RPC operation.  Instead, tcpdump keeps
       track of ``recent'' requests, and matches them to the replies using the  call  number  and
       service ID.  If a reply does not closely follow the corresponding request, it might not be
       parsable.

       KIP AppleTalk (DDP in UDP)

       AppleTalk DDP packets encapsulated in UDP datagrams are de-encapsulated and dumped as  DDP
       packets (i.e., all the UDP header information is discarded).  The file /etc/atalk.names is
       used to translate AppleTalk net and node numbers to names.  Lines in this  file  have  the
       form
              number    name

              1.254          ether
              16.1      icsd-net
              1.254.110 ace
       The  first  two lines give the names of AppleTalk networks.  The third line gives the name
       of a particular host (a host is distinguished from a net by the 3rd octet in the number  -
       a  net  number must have two octets and a host number must have three octets.)  The number
       and name should be separated by whitespace (blanks or tabs).   The  /etc/atalk.names  file
       may contain blank lines or comment lines (lines starting with a `#').

       AppleTalk addresses are printed in the form
              net.host.port

              144.1.209.2 > icsd-net.112.220
              office.2 > icsd-net.112.220
              jssmag.149.235 > icsd-net.2
       (If  the  /etc/atalk.names  doesn't  exist  or doesn't contain an entry for some AppleTalk
       host/net number, addresses are printed in numeric form.)  In the first example,  NBP  (DDP
       port  2) on net 144.1 node 209 is sending to whatever is listening on port 220 of net icsd
       node 112.  The second line is the same except the full name of the source  node  is  known
       (`office').  The third line is a send from port 235 on net jssmag node 149 to broadcast on
       the icsd-net NBP port (note that the broadcast address (255) is indicated by  a  net  name
       with  no  host  number - for this reason it's a good idea to keep node names and net names
       distinct in /etc/atalk.names).

       NBP (name binding protocol) and ATP (AppleTalk transaction protocol)  packets  have  their
       contents  interpreted.   Other protocols just dump the protocol name (or number if no name
       is registered for the protocol) and packet size.

       NBP packets are formatted like the following examples:
              icsd-net.112.220 > jssmag.2: nbp-lkup 190: "=:LaserWriter@*"
              jssmag.209.2 > icsd-net.112.220: nbp-reply 190: "RM1140:LaserWriter@*" 250
              techpit.2 > icsd-net.112.220: nbp-reply 190: "techpit:LaserWriter@*" 186
       The first line is a name lookup request for laserwriters sent by net  icsd  host  112  and
       broadcast on net jssmag.  The nbp id for the lookup is 190.  The second line shows a reply
       for this request (note that it has the same id) from host jssmag.209 saying that it has  a
       laserwriter resource named "RM1140" registered on port 250.  The third line is another re-
       ply to the same request saying host techpit has laserwriter "techpit" registered  on  port
       186.

       ATP packet formatting is demonstrated by the following example:
              jssmag.209.165 > helios.132: atp-req  12266<0-7> 0xae030001
              helios.132 > jssmag.209.165: atp-resp 12266:0 (512) 0xae040000
              helios.132 > jssmag.209.165: atp-resp 12266:1 (512) 0xae040000
              helios.132 > jssmag.209.165: atp-resp 12266:2 (512) 0xae040000
              helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000
              helios.132 > jssmag.209.165: atp-resp 12266:4 (512) 0xae040000
              helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000
              helios.132 > jssmag.209.165: atp-resp 12266:6 (512) 0xae040000
              helios.132 > jssmag.209.165: atp-resp*12266:7 (512) 0xae040000
              jssmag.209.165 > helios.132: atp-req  12266<3,5> 0xae030001
              helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000
              helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000
              jssmag.209.165 > helios.132: atp-rel  12266<0-7> 0xae030001
              jssmag.209.133 > helios.132: atp-req* 12267<0-7> 0xae030002
       Jssmag.209  initiates  transaction id 12266 with host helios by requesting up to 8 packets
       (the `<0-7>').  The hex number at the end of the line is the value of the `userdata' field
       in the request.

       Helios  responds with 8 512-byte packets.  The `:digit' following the transaction id gives
       the packet sequence number in the transaction and the number in parens is  the  amount  of
       data  in the packet, excluding the ATP header.  The `*' on packet 7 indicates that the EOM
       bit was set.

       Jssmag.209 then requests that packets 3 & 5 be retransmitted.  Helios  resends  them  then
       jssmag.209 releases the transaction.  Finally, jssmag.209 initiates the next request.  The
       `*' on the request indicates that XO (`exactly once') was not set.

SEE ALSO
       stty(1), pcap(3PCAP), bpf(4), nit(4P), pcap-savefile(5), pcap-filter(7), pcap-tstamp(7)

              https://www.iana.org/assignments/media-types/application/vnd.tcpdump.pcap

AUTHORS
       The original authors are:

       Van Jacobson, Craig Leres and Steven McCanne, all of the Lawrence Berkeley National  Labo-
       ratory, University of California, Berkeley, CA.

       It is currently being maintained by tcpdump.org.

       The current version is available via HTTPS:

              https://www.tcpdump.org/

       The original distribution is available via anonymous ftp:

              ftp://ftp.ee.lbl.gov/old/tcpdump.tar.Z

       IPv6/IPsec support is added by WIDE/KAME project.  This program uses OpenSSL/LibreSSL, un-
       der specific configurations.

BUGS
       To report a security issue please send an e-mail to security AT tcpdump.org.

       To report bugs and other problems, contribute patches, request a feature, provide  generic
       feedback etc. please see the file CONTRIBUTING in the tcpdump source tree root.

       NIT  doesn't let you watch your own outbound traffic, BPF will.  We recommend that you use
       the latter.

       On Linux systems with 2.0[.x] kernels:

              packets on the loopback device will be seen twice;

              packet filtering cannot be done in the kernel, so that all packets must  be  copied
              from the kernel in order to be filtered in user mode;

              all  of  a  packet,  not  just  the part that's within the snapshot length, will be
              copied from the kernel (the 2.0[.x] packet capture mechanism, if asked to copy only
              part  of a packet to userspace, will not report the true length of the packet; this
              would cause most IP packets to get an error from tcpdump);

              capturing on some PPP devices won't work correctly.

       We recommend that you upgrade to a 2.2 or later kernel.

       Some attempt should be made to reassemble IP fragments or, at least to compute  the  right
       length for the higher level protocol.

       Name  server  inverse  queries  are  not dumped correctly: the (empty) question section is
       printed rather than real query in the answer section.  Some believe that  inverse  queries
       are themselves a bug and prefer to fix the program generating them rather than tcpdump.

       A  packet  trace  that crosses a daylight savings time change will give skewed time stamps
       (the time change is ignored).

       Filter expressions on fields other than those in Token Ring  headers  will  not  correctly
       handle source-routed Token Ring packets.

       Filter  expressions on fields other than those in 802.11 headers will not correctly handle
       802.11 data packets with both To DS and From DS set.

       ip6 proto should chase header chain, but at this moment it does not.   ip6  protochain  is
       supplied for this behavior.

       Arithmetic  expression against transport layer headers, like tcp[0], does not work against
       IPv6 packets.  It only looks at IPv4 packets.

                                         21 December 2020                              TCPDUMP(8)

Generated by $Id: phpMan.php,v 4.55 2007/09/05 04:42:51 chedong Exp $ Author: Che Dong
On Apache
Under GNU General Public License
2025-01-14 20:59 @3.15.4.70 CrawledBy Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)
Valid XHTML 1.0!Valid CSS!