最近经常有些琐碎的想法,与其等想楚正襟危坐的写篇长的文章,不如随手记下来。不成体系,望海涵。今天想说歧视,这是我想了很久的一个问题。
到底什么是歧视?
BBS里面有些固定的种类的帖子会火,比如:北京人好还是上海人好?
其实这种帖子的讨论双方,不看也罢,更大可不必或者引经据典,或者脸红脖子粗的争吵,因为这是本身就是一个带有严重歧视成分的命题。无论哪方获胜,得出的结论都是源自同一种逻辑“人的好坏,是可以由他/她出生,或者生活的城市决定的”。
这个时候,马丁路德金在《我有一个梦想》的演讲中或许可以帮助我们。
“我梦想有一天,我的四个孩子将在一个不是以他们的肤色,而是以他们的品格优劣来评价他们的国度里生活。”
歧视很难辨别,也很难把握
基本上说,因为肤色而决定是否录用一个人是典型的歧视,但是如果在正剧里面物色秦始皇的扮演者,挑剔肤色就不在歧视的范畴。如果应聘者因为腿有些残疾而不被考虑录取为接线员,是不是歧视?而如果是一个短跑运动队的招聘,同样的情况不被考虑是不是歧视?我认为前者是,而后者不是。对于宗教信仰,对于性别,对于肤色,对于籍贯等等的不同而区别对待,并非都是歧视,而仅仅跟当下讨论的话题有关。
所以经过很多此论证,我自己对于歧视的定义式:
根据与讨论话题无关的因素来做判断思想本身成为歧视
感觉到更多歧视的人,多是有歧视思想的人
几年前,曾经和大哥谈到过歧视,他的结论是:“在国外,感觉被歧视的,多是在国内歧视别人的”。这论断或许失之片面,但的确是经常看到的场景。
以己度人是常理。我们总用自己的逻辑猜测别人的逻辑。很久以前见到有人超市结账时插队,被后面的人阻止。结果那个人大吵,认为在上海受到了歧视,并摆出外地人对上海的贡献来作鸣不平。以我看,真正有歧视思想的恰恰是他本人,因为当周围的人或许是基于他的行为,而不是他的籍贯来做出对一个人的判断的时候,他却把一个不相关的因素强行拉进来,这就是歧视。
有的人歧视日本人,有的人歧视有钱人,有的人歧视河南人,有的人歧视上海人。。。我们每天都在生活在歧视中间,作为歧视者和被歧视者生存。
歧视的根源
歧视其实是可以带来一些便利的。比如说,来自某些省份的产品从历史统计数据上说,的确质量问题比例偏高;当有某些属性的人(性别,宗教,是否有孩子,是否受过高等教育,是否。。。。),的确在统计学上面具有另外一个属性的可能性偏高。通过对于历史上的统计来判断这个人,从而直接从简历里面不通过面试而直接删除的确是一个节省时间的做法,但我们作为歧视者享有的便利,是以牺牲被评估者的利益为代价的。
当然,对于这种推断应该有个合理的限度。比如一个人本证明偷了三次东西,依据此人的历史做出他未来有可能偷东西,虽然严格意义上可以有0.0001%的歧视成分(小偷为什么不能改邪归正?),但我对这种“歧视”的接受度远远高于那些对于自己没有办法做出选择而出现的历史。仅仅因为一个人是哪里人,或者他/她的父母来做出对于一个个体的判断,无论这种判断听起来如何有道理,如何合情理,我自己的归类方法,都把它归为歧视的一种。
希望通过自己的思辨,让自己为这个世界消除一些歧视做些努力。
• 推荐“思维空间”(Thinking Space)blog
今天发现一个Thinking Space(思维空间)的Blog, 专门讨论Web万维网的发展趋势,看起来是一个留学美国的博士生写的Blog。
英文Blog地址
http://thinkingspacechinese.blogspot.com/
RSS订阅地址:http://feeds.feedburner.com/ThinkingSpace
中文Blog地址:
http://yihongs-research.blogspot.com/
RSS订阅地址:http://feeds.feedburner.com/ThinkingSpaceChinese
用Google Reader的国内用户应该可以通过RSS来订阅。
• 从个体社交图(Individual Social Graph)到群体社交图(Group Social Graph)
小容也记录一下今天自己的点滴思考。今天发现豆瓣上有个TED小组,
The TED (Technology, Entertainment, Design) conference is an annual event where leading thinkers and doers gather for inspiration. (More at http://www.ted.com)
http://www.douban.com/group/tedtalks/
本页永久链接: http://www.douban.com/group/tedtalks/
订阅小组讨论: feed: rss 2.0
译言网Yeeyan.com里也有一个TED小组:
TED是Technology, Entertainment, Design (科技、娱乐、设计)的缩写,这个会议的宗旨是”用思想的力量来改变世界”。它 于1984年由理查德•温曼和哈里•马克思共同创办,从1990年开始每年在美国加州的蒙特利举办一次,而如今,在世界的其他城市也会每半年举办一次。 TED会聚一群卓越的人,相互交流,并产生难以估量的价值。会议的演讲内容宽泛,涵盖科学、艺术、政治、全球性问题、建筑、音乐等等。到目前为止,已经有 包括美国前总统克林顿、维基百科创始人詹姆斯•华森、google创办人等等社会各行各业有影响力的人物到场演讲。
TED演讲录小组的目的是要将www.TED.com网站上的英文演讲视频记录并翻译成中文文本,让有价值的演讲影响更多的中国人。
http://www.yeeyan.com/groups/show/ted
如果两个小组联合起来会发生什么情况?所以很期待下一个版主管理工具:Sidebar定制。
如果Yeeyan的版主可以定制小组网页的Sidebar,那么TED版主Jia Liu就可以把豆瓣上的TED小组讨论通过RSS输出到Yeeyan的TED小组页面上来。
同样,如果豆瓣提供类似Yeeyan的版主管理工具的话,也可以把Yeeyan上的TED小组的RSS输入到豆瓣上去。
在不同网站小组之间的Mashup将会给部分积极用户提供极其便利的使用体验。我想Groups Social Graph可能是个人Individual Social Graph之后的趋势了。
• 关于Social Graph的几篇文章
请看小容的英文Blog这里的推荐。
褪墨《怎样设定目标》系列:目标的重要性、如何搞定目标设定和揭示目标失败的种种原因!
为什么你制定了目标却仍然失败?也许失败已经让你觉得设定目标毫无用处,可是真的如此吗?那么,你有静下来想想为什么你的目标会失败呢?我想你很可能犯下了以下一些错误:
你是否设定了太多的目标,并且天真地希望自己全部都能一一实现。这不是不可能,更多的目标意味着精力的分散,特别是当你拥有太多的长期目标和中期目标时。
学习一门新技能、减肥20公斤等等,这些都需要花费几个月才可能达到目标。如果你设定了太多诸如此类的大目标,你就会被到处牵着走,反而又变成没有目的性了。所以,建议你只留2-3个长期、中期目标,通过将大目标分解为若干个小目标,落实到具体的每天每周的任务上。
你为什么要设定这个计划?达到这个计划的目标对你意味着什么?当你达到目标后你会有什么感觉?如果你对这些问题都还不是很清楚,说明今年你还不是特别急切地希望达到这些目标。
一个明确的目标,即使面对艰难和挑战,你仍然急切地想要竭尽所能来达到它。所以,你需要十分透彻地明白你制定的目标对你的意义。否则,你只会很容易忘记它,并且很难会有进展。
想要记住并且开始执行自己的目标,最好的办法就是写下来!描述你的目标是什么,你要怎样达到它。如果你从来没有将目标记下来过,那现在就把你的目标写下。参考阅读《如何规划成功的新年目标》
将目标写下来,可以梳理你的含糊不清、条例不顺的想法。记住,明确的目标才能保证你的成功,而明确的目标不会轻松地用脑袋想想就能全部明白的。所以,花点时间,坐下来仔细写下来。
人类是健忘的动物。即使你有将目标写下来,可是你还是会忘记。让自己深深记住,潜意识里不断提醒自己的最好的方法就是“重复”——让你天天都可以看到自己的目标。
你可以把自己的目标放在每天可以看到的地方,如:写在记事本里、通过电脑提醒等等。
我想你已经知道回顾的重要性。定期回顾使你确定自己是否朝着目标前进,有没有取得预期的成功。
就像飞行员驾驶飞机时,需要定时检查和修正飞行的航线。定期回顾可以使你发现目标和计划中出现的问题,并且找出其中的解决办法。参考阅读《如何时刻保持在目标的正确轨道上》
将你的目标告诉别人,因为你需要一点压力。也许你害怕对别人作出承诺,但是将自己的目标告诉别人只会迫使你要对自己的目标负责。
你很可能会感到变扭,那就告诉亲人和朋友。保证一定要完成目标,并且让他们监督你。如果你还在乎自己在他们心中的优秀形象,那就赶快执行目标吧~
一个好汉三个帮,去取得目标不意味着你是一个独行侠。相反,你还需要家人、朋友的支持。
例如:如果你打算减肥,但是你的家人却每天吃快餐,这绝对不会对你有帮助;如果你想培养起早床,室友却每天睡懒觉,你最好也把他拉进计划。向你周围的人谈谈你的目标和计划,要求他们给你提供多少支持,不管是精神上的还是物质上的。
Posted by randfish
The vast majority of search marketers operating in the organic space at least lay claim to "following the latest algorithms" at the search engines, and in 90% of the client pitches I've ever heard (or made, for that matter), the subject comes up at least once. However, I think this is still a topic about which there's not a lot of true understanding and for those new to the field, it's probably the most daunting aspect of the work. So, to help ease some pain, I figured I'd address many of the most common questions about keeping up with the search engines' ever-changing mathematical formulas that rank search results.
What is an Algorithm? How does it apply to the Search Results at Google, Yahoo! & MSN/Live?
An algorithm is just a complex equation (or set of equations) that, in the search engines' case, performs a sorting task. Here's an example of an exceptionally simple search engine algorithm:
Rank = Number of Terms * Number of Links to Page * Number of Trusted Links
In the example above, the engine ranks pages on the basis of three simple factors - the number of times the search term appears on the page, the number of links to that page and the number of "trusted" links to the page. In reality, Google has said that their algorithm contains more than 200 individual elements used to determine rank (ranking factors). The ranking factors in search engine algorithms come in two primary varieties (and dozens of offshoots) - query dependent factors and query-independent factors.
Query dependent factors are part of the sorting mechanism that's executed when your search is submitted to the engine. The search engines don't know what you're about to search for, so there are many variables they can't pre-calculate and need to do on demand. These include identifying pages that contain the keywords you've searched for, calculating keyword-based relevance and collecting any geographic or personalilzed data about you in order to serve a more targeted result. To help preserve resources, the search engines do cache an enormous number of their most popular search results at regular intervals, so as not to force these computations more than is necessary.
Query-independent factors are pieces of information a search engine knows about a given site or page before a query is ever executed. The most famous example is Google's PageRank, which purports to measure the global popularity of a web document, based on the links that point to it. Other factors might include TrustRank (a trust-based link metric), domain association (the website a piece of content is hosted on), keyword frequency (or term weight) and freshness.
Algorithms directly impact the search results by acting as the engines' sorting mechanism. The reason you see SEOmoz's blog post ranking below the Google technology page and above the AMS.org page in the screenshot below is because Google's algorithm has sorted it thusly.
Last year, I wrote a post taking a rough guess at the macro-factors that might make up Google's algorithm, which might serve as a helpful example of how to think about them in a non-technical fashion.
Why do SEOs Need to Pay Attention to Search Algorithms?
Because that's how the search engines rank documents in the results, of course!
Seriously, though, if you're a professional SEO, trying to garener more search traffic, a detailed understanding of the search engine algorithms and a thorough study of the factors that impact them is vital to your job performance. When I imagine that a time machine whisked my 2002 self forward to 2008, the litany of tragic SEO mistakes I might make probably dwarfs any value I might have brought to my 2002 campaigns. In the 6 years since I first learned about the practice of influencing the search results, the algorithms have changed to an enormous extent. Let's take a quick look at some of the algorithmic evolution we've seen in the past 6 years:
These are just a few of the many changes to the algorithms over the last 6 years, and only by paying attention and staying ahead of the curve could we hope to provide our clients and our own projects with the best consulting and strategic advice possible. Keeping up with algorithmic changes, particularly those that validate new techniques or invalidate old ones is not just essential to good SEO, it's the responsibility of anyone who's job is to market to the search engines.
How can we Research and Keep Up with the Latest Trends in Algorithmic Evolution?
There are a few good, simple tactics that enable nearly anyone to keep up with the algorithms of the major engines. They include:
#1 Maintaining several websites (or at least having access to campaign & search visito data) provides some of the best information you can use to make informed decisions. By observing the trends in how the search engines rank and send traffic to different types of sites based on their marketing and content activities, you'll be able to use intuitive reasoning to form hypotheses about where the engines are moving. From there, testing, tweaking and re-evaluating will give you the knowledge you seek.
#2 Reading the following excellent sources for information on a regular basis will give you a big leg up in the battle for algorithmic insight:
#3 Running tests using nonsense keywords and domains (and controlling for external links) also gives terrific A/B test evaluation data of what factors matter more or less to the engines' algos. I've described this testing process in more detail here in the Beginner's Guide.
How do we Apply the Knowledge Learned from Research to Real-World Campaigns?
The same way we apply any piece of knowledge that's primarily theory - by testing and iterating. If you see strong evidence or hear from a trusted source that linking in content provides more SEO value than linking in div elements or top-level menu navigation, you might give this a try by taking a single section of your site and instituting Wikipedia-like interlinking on content pages. If, after a month, you can observe that the engines (or a single engine) has crawled all those pages and your traffic from that source rose more than normal, you might consider the effect "plausible" and try the same thing on other sections of the site.
Alternatively, you can test in the nonsense-word environments described above. This gives less realistic feedback, but doesn't endanger anything on your sites, either :)
All in all, keeping up with the algorithms parallels any other optimization strategy - tax deductions, faster routes to work, better ways to chop onions, etc. Read, research, test and if you experience positive results, implement.
There's plenty more to the practice of algorithmic research and evaluation, but we'll save those for another post. In the meantime, I'd love to hear your thoughts on algo studies and the value you receive from it.
二月 2008 | ||||||
一 | 二 | 三 | 四 | 五 | 六 | 日 |
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 |